Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 946: 173734, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857805

RESUMO

Seasonal and daily variations of gaseous emissions from naturally ventilated dairy cattle barns are important figures for the establishment of effective and specific mitigation plans. The present study aimed to measure methane (CH4) and ammonia (NH3) emissions in three naturally ventilated dairy cattle barns covering the four seasons for two consecutive years. In each barn, air samples from five indoor locations were drawn by a multipoint sampler to a photoacoustic infrared multigas monitor, along with temperature and relative humidity. Milk production data were also recorded. Results showed seasonal differences for CH4 and NH3 emissions in the three barns with no clear trends within years. Globally, diel CH4 emissions increased in the daytime with high intra-hour variability. The average hourly CH4 emissions (g h-1 livestock unit-1 (LU)) varied from 8.1 to 11.2 and 6.2 to 20.3 in the dairy barn 1, from 10.1 to 31.4 and 10.9 to 22.8 in the dairy barn 2, and from 1.5 to 8.2 and 13.1 to 22.1 in the dairy barn 3, respectively, in years 1 and 2. Diel NH3 emissions highly varied within hours and increased in the daytime. The average hourly NH3 emissions (g h-1 LU-1) varied from 0.78 to 1.56 and 0.50 to 1.38 in the dairy barn 1, from 1.04 to 3.40 and 0.93 to 1.98 in the dairy barn 2, and from 0.66 to 1.32 and 1.67 to 1.73 in the dairy barn 3, respectively, in years 1 and 2. Moreover, the emission factors of CH4 and NH3 were 309.5 and 30.6 (g day-1 LU-1), respectively, for naturally ventilated dairy cattle barns. Overall, this study provided a detailed characterization of seasonal and daily gaseous emissions variations highlighting the need for future longitudinal emission studies and identifying an opportunity to better adequate the existing mitigation strategies according to season and daytime.


Assuntos
Poluentes Atmosféricos , Amônia , Indústria de Laticínios , Monitoramento Ambiental , Metano , Estações do Ano , Ventilação , Metano/análise , Animais , Amônia/análise , Bovinos , Poluentes Atmosféricos/análise , Abrigo para Animais , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos
2.
J Environ Manage ; 320: 115882, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35952566

RESUMO

Decomposition of dairy cows' excreta on housing floor leads to ammonia and greenhouse gases production, yet factors affecting total emissions have not been fully disclosed. This work aimed to assess the impact of lactation stage, feeding system and sampling time on gaseous emission potential of cow's faeces and urine in laboratory chambers systems. Individual faeces and urine were collected from two groups of four cows, at peak and post peak lactation, from three commercial farms with distinct feeding systems: total mixed ration (TMR), total mixed ration plus concentrate at robot (TMR + robot), and total mixed ration plus concentrate in automatic feeders (TMR + AF). Samples were collected before a.m. (T8h), at middle day (T12h), and before p.m. (T17h) milking. In a laboratory chambers system, faeces and urine were mixed in a ratio of 1.7:1, and ammonia and greenhouse gases emissions were monitored during 48-h. Cumulative N-N2O emissions were the highest in TMR + robot system, post peak cows and sampling time T17h. An interaction between stage of lactation and sampling time was detected for N-NH3 and N-N2O (g/kg organic soluble N) emissions. Post peak cows also produced the highest cumulative N-NH3 emissions. Overall results contribute for the identification of specific on-farm strategies to reduce gaseous emissions from cows' excreta.


Assuntos
Amônia , Gases de Efeito Estufa , Ração Animal/análise , Animais , Bovinos , Indústria de Laticínios/métodos , Dieta/veterinária , Fazendas , Feminino , Lactação , Leite
3.
PeerJ ; 8: e9488, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194323

RESUMO

BACKGROUND: The awareness of environmental and socio-economic impacts caused by greenhouse gas emissions from the livestock sector leverages the adoption of strategies to counteract it. Feed supplements can play an important role in the reduction of the main greenhouse gas produced by ruminants-methane (CH4). In this context, this study aims to assess the effect of two biochar sources and inclusion levels on rumen fermentation parameters in vitro. METHODS: Two sources of biochar (agro-forestry residues, AFB, and potato peel, PPB) were added at two levels (5 and 10%, dry matter (DM) basis) to two basal substrates (haylage and corn silage) and incubated 24-h with rumen inocula to assess the effects on CH4 production and main rumen fermentation parameters in vitro. RESULTS: AFB and PPB were obtained at different carbonization conditions resulting in different apparent surface areas, ash content, pH at the point of zero charge (pHpzc), and elemental analysis. Relative to control (0% biochar), biochar supplementation kept unaffected total gas production and yield (mL and mL/g DM, p = 0.140 and p = 0.240, respectively) and fermentation pH (p = 0.666), increased CH4production and yield (mL and mL/g DM, respectively, p = 0.001) and ammonia-N (NH3-N, p = 0.040), and decreased total volatile fatty acids (VFA) production (p < 0.001) and H2 generated and consumed (p ≤ 0.001). Biochar sources and inclusion levels had no negative effect on most of the fermentation parameters and efficiency. Acetic:propionic acid ratio (p = 0.048) and H2 consumed (p = 0.019) were lower with AFB inclusion when compared to PPB. Biochar inclusion at 10% reduced H2 consumed (p < 0.001) and tended to reduce total gas production (p = 0.055). Total VFA production (p = 0.019), acetic acid proportion (p = 0.011) and H2 generated (p = 0.048) were the lowest with AFB supplemented at 10%, no differences being observed among the other treatments. The basal substrate affected most fermentation parameters independently of biochar source and level used. DISCUSSION: Biochar supplementation increased NH3-N content, iso-butyric, iso-valeric and valeric acid proportions, and decreased VFA production suggesting a reduced energy supply for microbial growth, higher proteolysis and deamination of substrate N, and a decrease of NH3-N incorporation into microbial protein. No interaction was found between substrate and biochar source or level on any of the parameters measured. Although AFB and PPB had different textural and compositional characteristics, their effects on the rumen fermentation parameters were similar, the only observed effects being due to AFB included at 10%. Biochar supplementation promoted CH4 production regardless of the source and inclusion level, suggesting that there may be other effects beyond biomass and temperature of production of biochar, highlighting the need to consider other characteristics to better identify the mechanism by which biochar may influence CH4 production.

4.
Enzyme Microb Technol ; 79-80: 8-18, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26320709

RESUMO

Trypsin was successfully entrapped in situ into nanofibers of poly(ϵ-caprolactone) (PCL) prepared by electrospinning. The spinning dope was an emulsion consisting of an aqueous phase with the solubilized enzyme in a pH buffer plus an oil phase of the polymer solubilized in chloroform (CF)/dimethylformamide (DMF). The optimized materials were composed by random arrays of bead-free fibers with outer diameters in the range 110-180 nm without showing core-shell structure. The fiber size and morphology, membrane porosity and surface properties were shown to be influenced by the polymer concentration and the composition ratio of the solvent mixture, and also by the presence of the enzyme. The activity of the immobilized trypsin was studied toward both a low-molecular weight synthetic substrate (BAPNA) and a protein (casein). Fluorescence microscopy, the increasing hydrophilicity of the fibrous membrane and the observed catalytic activity confirmed the entrapment of the enzyme into the PCL nanofibers. The best activity retention (∼66% toward BAPNA) was achieved using 0.20 g/mL PCL in CF/DMF [75:25], with trypsin in an aqueous buffer at pH 7.1 in the presence of benzamidine and Span80. The immobilized enzyme showed satisfactory operational stability retaining ∼59% of its initial activity after five reaction cycles. Compared with the free enzyme, the storage (at 4 °C) and thermal stability of the immobilized enzyme were highly improved. The retained catalytic activity and the observed reusability can be explained by a heterogeneous distribution of the enzyme within the polymer fiber influenced by the electrostatic field during the electrospinning process, enabling a preferential location near the fiber surface but simultaneously assuring minimal leaching out during operations. Results suggest that trypsin-PCL fibrous membranes may be useful for concomitant proteolytic and separation commercial applications.


Assuntos
Enzimas Imobilizadas/metabolismo , Tripsina/metabolismo , Animais , Biocatálise , Técnicas Eletroquímicas , Estabilidade Enzimática , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Varredura , Nanofibras/química , Nanofibras/ultraestrutura , Poliésteres/química , Porosidade , Propriedades de Superfície , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...