Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 357: 142062, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636915

RESUMO

Coffee processing wastes, such as solid (pulp and husk) and wastewater, co-digested with industrial brewery wastewater, serve as excellent substrates for generating methane in the anaerobic digestion process. This study compared methane production using different compositions of cattle manure (CM) and granular sludge from an Upflow Anaerobic Sludge Blanket (UASB) reactor used in poultry wastewater treatment (GS). Four anaerobic batch reactors (500 mL) were assembled, A (50% CM and 50% GS), B (60% CM and 40% GS), C (70% CM and 30% of GS) and D (60% CM and 40% GS). Equal concentrations of substrates were added to all reactors: pulp and husk pretreated by hydrothermolysis (1 g L-1), coffee (10 g COD L-1) and brewery (1.5 g COD L-1) wastewaters. Assays A, B and C were supplemented with 2 g L-1 of yeast extract, except for assay D. The reactors were operated at 37 °C and pH 7.0. In assay B, the highest CH4 production of 759.15 ± 19.20 mL CH4 g-1 TS was observed, possibly favored by the synergistic interactions between cellulolytic bacteria Christensenellaceae_R-7_group and Methanosaeta archaea, as inferred by genes encoding enzymes related to acetoclastic methanogenesis (acetyl-CoA synthetase). Consequently, the electricity production potential of assay B (45614.08 kWh-1 year-1) could meet the energy demand of a farm producing coffee and beer, contributing to a positive energy balance concerning methane generation.


Assuntos
Reatores Biológicos , Café , Esterco , Metano , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Animais , Metano/metabolismo , Bovinos , Anaerobiose , Águas Residuárias/química , Café/metabolismo , Eliminação de Resíduos Líquidos/métodos , Resíduos Industriais , Biocombustíveis
2.
J Environ Manage ; 348: 119308, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37883832

RESUMO

This research aimed at evaluating optimal conditions to obtain value-added metabolites, such as bio-CH4, by co-digesting swine manure and food waste diluted in domestic sewage. The assays were carried out in batches using the statistical methods of Rotational Central Composite Design (RCCD) and Surface Response to evaluate the ranges of food waste (1.30-9.70 gTS.L-1), pH (6.16-7.84) and granular Upflow Anaerobic Sludge Blanket sludge as inoculum (2.32-5.68 gTS.L-1), besides about 250 mL of swine manure in 500 mL Duran flasks. According to the RCCD matrix, bio-CH4 yields among 600.6 ± 60.1 and 2790.0 ± 112.0 mL CH4 gTS.L-1 were observed, besides the maximum CH4 production rate between 0.4 ± 0.5 and 49.7 ± 2.0 mL CH4 h-1 and λ between ≤0.0 and 299.3 ± 4.5 h. In the validation assay, the optimal conditions of 9.98 gTS.L-1 of food waste, pH adjusted to 8.0 and 2.20 gTS.L-1 of inoculum were considered, and the bio-CH4 yield obtained (5640.79 ± 242.98 mL CH4 gTS.L-1 or also 5201.83 ± 224.07 mL CH4 gTVS.L-1) was 11.3 times higher than in assays before optimization (499.3 ± 16.0 mL CH4 gTS.L-1) with 5 gTS.L-1 of food waste, 3 gTS.L-1 of inoculum and pH 7.0. Besides, the results observed about the energetic balance of the control and validation assays highlight the importance of process optimization, as this condition was the only one with energy supply higher than the energy required for its operation, exceeding max consumption sevenfold. Based on the most dominant microorganisms (Methanosaeta, 31.06%) and the metabolic inference of the validation assay, it could be inferred that the acetoclastic methanogenesis was the predominant pathway to CH4 production.


Assuntos
Eliminação de Resíduos , Esgotos , Animais , Suínos , Esgotos/química , Anaerobiose , Eliminação de Resíduos/métodos , Esterco , Alimentos , Reatores Biológicos , Concentração de Íons de Hidrogênio , Metano , Biocombustíveis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...