Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Math Biosci Eng ; 18(6): 9511-9524, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34814356

RESUMO

Classical quantification of gastric emptying (GE) and orocaecal transit (OCT) based on half-life time T$ _{50} $, mean gastric emptying time (MGET), orocaecal transit time (OCTT) or mean caecum arrival time (MCAT) can lead to misconceptions when analyzing irregularly or noisy data. We show that this is the case for gastrointestinal transit of control and of diabetic rats. Addressing this limitation, we present an artificial neural network (ANN) as an alternative tool capable of discriminating between control and diabetic rats through GE and OCT analysis. Our data were obtained via biological experiments using the alternate current biosusceptometry (ACB) method. The GE results are quantified by T$ _{50} $ and MGET, while the OCT is quantified by OCTT and MCAT. Other than these classical metrics, we employ a supervised training to classify between control and diabetes groups, accessing sensitivity, specificity, $ f_1 $ score, and AUROC from the ANN. For GE, the ANN sensitivity is 88%, its specificity is 83%, and its $ f_1 $ score is 88%. For OCT, the ANN sensitivity is 100%, its specificity is 75%, and its $ f_1 $ score is 85%. The area under the receiver operator curve (AUROC) from both GE and OCT data is about 0.9 in both training and validation, while the AUCs for classical metrics are 0.8 or less. These results show that the supervised training and the binary classification of the ANN was successful. Classical metrics based on statistical moments and ROC curve analyses led to contradictions, but our ANN performs as a reliable tool to evaluate the complete profile of the curves, leading to a classification of similar curves that are barely distinguished using statistical moments or ROC curves. The reported ANN provides an alert that the use of classical metrics can lead to physiological misunderstandings in gastrointestinal transit processes. This ANN capability of discriminating diseases in GE and OCT processes can be further explored and tested in other applications.


Assuntos
Diabetes Mellitus Experimental , Esvaziamento Gástrico , Animais , Ceco , Trânsito Gastrointestinal , Redes Neurais de Computação , Ratos
2.
Math Biosci Eng ; 10(1): 221-34, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23311370

RESUMO

Dosage and frequency of treatment schedules are important for successful chemotherapy. However, in this work we argue that cell-kill response and tumoral growth should not be seen as separate and therefore are essential in a mathematical cancer model. This paper presents a mathematical model for sequencing of cancer chemotherapy and surgery. Our purpose is to investigate treatments for large human tumours considering a suitable cell-kill dynamics. We use some biological and pharmacological data in a numerical approach, where drug administration occurs in cycles (periodic infusion) and surgery is performed instantaneously. Moreover, we also present an analysis of stability for a chemotherapeutic model with continuous drug administration. According to Norton and Simon [22], our results indicate that chemotherapy is less efficient in treating tumours that have reached a plateau level of growing and that a combination with surgical treatment can provide better outcomes.


Assuntos
Antineoplásicos/uso terapêutico , Tratamento Farmacológico/métodos , Modelos Biológicos , Neoplasias/tratamento farmacológico , Algoritmos , Humanos , Cinética , Oncologia/métodos , Modelos Estatísticos , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...