Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 700782, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262570

RESUMO

Expression of CCR5 and its cognate ligands have been implicated in COVID-19 pathogenesis, consequently therapeutics directed against CCR5 are being investigated. Here, we explored the role of CCR5 and its ligands across the immunologic spectrum of COVID-19. We used a bioinformatics approach to predict and model the immunologic phases of COVID so that effective treatment strategies can be devised and monitored. We investigated 224 individuals including healthy controls and patients spanning the COVID-19 disease continuum. We assessed the plasma and isolated peripheral blood mononuclear cells (PBMCs) from 29 healthy controls, 26 Mild-Moderate COVID-19 individuals, 48 Severe COVID-19 individuals, and 121 individuals with post-acute sequelae of COVID-19 (PASC) symptoms. Immune subset profiling and a 14-plex cytokine panel were run on all patients from each group. B-cells were significantly elevated compared to healthy control individuals (P<0.001) as was the CD14+, CD16+, CCR5+ monocytic subset (P<0.001). CD4 and CD8 positive T-cells expressing PD-1 as well as T-regulatory cells were significantly lower than healthy controls (P<0.001 and P=0.01 respectively). CCL5/RANTES, IL-2, IL-4, CCL3, IL-6, IL-10, IFN-γ, and VEGF were all significantly elevated compared to healthy controls (all P<0.001). Conversely GM-CSF and CCL4 were in significantly lower levels than healthy controls (P=0.01). Data were further analyzed and the classes were balanced using SMOTE. With a balanced working dataset, we constructed 3 random forest classifiers: a multi-class predictor, a Severe disease group binary classifier and a PASC binary classifier. Models were also analyzed for feature importance to identify relevant cytokines to generate a disease score. Multi-class models generated a score specific for the PASC patients and defined as S1 = (IFN-γ + IL-2)/CCL4-MIP-1ß. Second, a score for the Severe COVID-19 patients was defined as S2 = (IL-6+sCD40L/1000 + VEGF/10 + 10*IL-10)/(IL-2 + IL-8). Severe COVID-19 patients are characterized by excessive inflammation and dysregulated T cell activation, recruitment, and counteracting activities. While PASC patients are characterized by a profile able to induce the activation of effector T cells with pro-inflammatory properties and the capacity of generating an effective immune response to eliminate the virus but without the proper recruitment signals to attract activated T cells.


Assuntos
COVID-19/complicações , Biologia Computacional/métodos , Aprendizado de Máquina , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Algoritmos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/sangue , COVID-19/imunologia , COVID-19/virologia , Estudos de Casos e Controles , Quimiocina CCL5/sangue , Feminino , Humanos , Ativação Linfocitária , Masculino , Prognóstico , RNA Viral/sangue , RNA Viral/genética , Receptores CCR5/sangue , Linfócitos T Reguladores/imunologia , Síndrome de COVID-19 Pós-Aguda
2.
Front Immunol ; 12: 746021, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35082777

RESUMO

The recent COVID-19 pandemic is a treatment challenge in the acute infection stage but the recognition of chronic COVID-19 symptoms termed post-acute sequelae SARS-CoV-2 infection (PASC) may affect up to 30% of all infected individuals. The underlying mechanism and source of this distinct immunologic condition three months or more after initial infection remains elusive. Here, we investigated the presence of SARS-CoV-2 S1 protein in 46 individuals. We analyzed T-cell, B-cell, and monocytic subsets in both severe COVID-19 patients and in patients with post-acute sequelae of COVID-19 (PASC). The levels of both intermediate (CD14+, CD16+) and non-classical monocyte (CD14Lo, CD16+) were significantly elevated in PASC patients up to 15 months post-acute infection compared to healthy controls (P=0.002 and P=0.01, respectively). A statistically significant number of non-classical monocytes contained SARS-CoV-2 S1 protein in both severe (P=0.004) and PASC patients (P=0.02) out to 15 months post-infection. Non-classical monocytes were sorted from PASC patients using flow cytometric sorting and the SARS-CoV-2 S1 protein was confirmed by mass spectrometry. Cells from 4 out of 11 severe COVID-19 patients and 1 out of 26 PASC patients contained ddPCR+ peripheral blood mononuclear cells, however, only fragmented SARS-CoV-2 RNA was found in PASC patients. No full length sequences were identified, and no sequences that could account for the observed S1 protein were identified in any patient. That non-classical monocytes may be a source of inflammation in PASC warrants further study.


Assuntos
COVID-19/imunologia , Monócitos/imunologia , Receptores de IgG/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Feminino , Citometria de Fluxo , Seguimentos , Proteínas Ligadas por GPI/imunologia , Humanos , Masculino , Pessoa de Meia-Idade
3.
Int J Infect Dis ; 103: 25-32, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33186704

RESUMO

OBJECTIVE: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is now a global pandemic. Emerging results indicate a dysregulated immune response. Given the role of CCR5 in immune cell migration and inflammation, we investigated the impact of CCR5 blockade via the CCR5-specific antibody leronlimab on clinical, immunological, and virological parameters in severe COVID-19 patients. METHODS: In March 2020, 10 terminally ill, critical COVID-19 patients received two doses of leronlimab via individual emergency use indication. We analyzed changes in clinical presentation, immune cell populations, inflammation, as well as SARS-CoV-2 plasma viremia before and 14 days after treatment. RESULTS: Over the 14-day study period, six patients survived, two were extubated, and one discharged. We observed complete CCR5 receptor occupancy in all donors by day 7. Compared with the baseline, we observed a concomitant statistically significant reduction in plasma IL-6, restoration of the CD4/CD8 ratio, and resolution of SARS-CoV2 plasma viremia (pVL). Furthermore, the increase in the CD8 percentage was inversely correlated with the reduction in pVL (r = -0.77, p = 0.0013). CONCLUSIONS: Our study design precludes clinical efficacy inferences but the results implicate CCR5 as a therapeutic target for COVID-19 and they form the basis for ongoing randomized clinical trials.


Assuntos
Antagonistas dos Receptores CCR5/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Tratamento Farmacológico da COVID-19 , Citocinas/sangue , RNA Viral/sangue , SARS-CoV-2 , Adulto , Idoso , COVID-19/imunologia , COVID-19/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
4.
medRxiv ; 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32511656

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is now pandemic with nearly three million cases reported to date. Although the majority of COVID-19 patients experience only mild or moderate symptoms, a subset will progress to severe disease with pneumonia and acute respiratory distress syndrome (ARDS) requiring mechanical ventilation. Emerging results indicate a dysregulated immune response characterized by runaway inflammation, including cytokine release syndrome (CRS), as the major driver of pathology in severe COVID-19. With no treatments currently approved for COVID-19, therapeutics to prevent or treat the excessive inflammation in severe disease caused by SARS-CoV-2 infection are urgently needed. Here, in 10 terminally-ill, critical COVID-19 patients we report profound elevation of plasma IL-6 and CCL5 (RANTES), decreased CD8+ T cell levels, and SARS-CoV-2 plasma viremia. Following compassionate care treatment with the CCR5 blocking antibody leronlimab, we observed complete CCR5 receptor occupancy on macrophage and T cells, rapid reduction of plasma IL-6, restoration of the CD4/CD8 ratio, and a significant decrease in SARS-CoV-2 plasma viremia. Consistent with reduction of plasma IL-6, single-cell RNA-sequencing revealed declines in transcriptomic myeloid cell clusters expressing IL-6 and interferon-related genes. These results demonstrate a novel approach to resolving unchecked inflammation, restoring immunologic deficiencies, and reducing SARS-CoV-2 plasma viral load via disruption of the CCL5-CCR5 axis, and support randomized clinical trials to assess clinical efficacy of leronlimab-mediated inhibition of CCR5 for COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...