Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 53(2): 1052-1064, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25579385

RESUMO

Lack of axon regeneration following spinal cord injury has been mainly ascribed to the inhibitory environment of the injury site, i.e., to chondroitin sulfate proteoglycans (CSPGs) and myelin-associated inhibitors (MAIs). Here, we used shiverer (shi) mice to assess axon regeneration following spinal cord injury in the presence of MAIs and CSPG but in the absence of compact myelin. Although in vitro shi neurons displayed a similar intrinsic neurite outgrowth to wild-type neurons, in vivo, shi fibers had increased regenerative capacity, suggesting that the wild-type spinal cord contains additional inhibitors besides MAIs and CSPG. Our data show that besides myelin protein, myelin lipids are highly inhibitory for neurite outgrowth and suggest that this inhibitory effect is released in the shi spinal cord given its decreased lipid content. Specifically, we identified cholesterol and sphingomyelin as novel myelin-associated inhibitors that operate through a Rho-dependent mechanism and have inhibitory activity in multiple neuron types. We further demonstrated the inhibitory action of myelin lipids in vivo, by showing that delivery of 2-hydroxypropyl-ß-cyclodextrin, a drug that reduces the levels of lipids specifically in the injury site, leads to increased axon regeneration of wild-type (WT) dorsal column axons following spinal cord injury. In summary, our work shows that myelin lipids are important modulators of axon regeneration that should be considered together with protein MAIs as critical targets in strategies aiming at improving axonal growth following injury.


Assuntos
Axônios/patologia , Lipídeos/química , Bainha de Mielina/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia , Medula Espinal/patologia , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Colesterol/metabolismo , Camundongos Endogâmicos C57BL , Bainha de Mielina/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Esfingomielinas/metabolismo , Medula Espinal/efeitos dos fármacos , beta-Ciclodextrinas/farmacologia , Proteínas rho de Ligação ao GTP/metabolismo
2.
Virchows Arch ; 458(4): 477-86, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21328014

RESUMO

Fabry disease is a rare X-linked disorder caused by mutations in the α-galactosidase gene (GLA), the resultant deficiency of lysosomal α-galactosidase enzyme activity leading to systemic accumulation of globotriaosylceramide and other glycosphingolipids. GLA knockout mice ("Fabry mice") were generated as an animal model for Fabry disease but, as they do not manifest progressive chronic kidney disease (CKD), their relevance as a model for human Fabry nephropathy is uncertain. We evaluated the histological alterations in the kidneys of Fabry mice at different ages, as contrasted to those observed in wild-type mice. Furthermore, we compared the renal histological alterations of Fabry mice to the kidney pathology reported in patients with Fabry disease at comparable age ranges and across different CKD stages, using a scoring system that has been developed for Fabry nephropathy. Fabry mice are phenotypically different from wild-type mice, displaying progressive age-related accumulation of glycosphingolipids in all types of renal cells. There were no statistically significant differences between Fabry mice and Fabry patients in the prevalence of glycosphingolipid storage per renal cell type with the exceptions of mesangial (higher in humans) and proximal tubular cells (higher in mice). However, Fabry mice lack the nonspecific histological glomerulosclerotic and interstitial fibrotic renal lesions that best correlate with progressive CKD in Fabry patients, and do not develop large podocyte inclusions. We postulate that the elucidation of the mechanisms underlying these species differences, may contribute important clues to a better understanding of the pathogenesis of Fabry nephropathy.


Assuntos
Doença de Fabry/patologia , Rim/patologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Corpos de Inclusão/patologia , Masculino , Camundongos , Camundongos Knockout
4.
Ann N Y Acad Sci ; 1074: 590-603, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17105955

RESUMO

In recent years there has been growing use of methamphetamine (METH) by pregnant women, resulting in an increasing number of children exposed prenatally to this drug of abuse. METH is known to be potentially neurotoxic to human adults, but there is minimal information with respect to the consequences of such exposure to the fetus. The purpose of this study was to ascertain external parameters of animal development, as well as neurochemical and immunohistochemical alterations at three key points of retinal development (postnatal day [PND] 7, 14, and 30). Rats of the Wistar strain were used in this experimental model. Pregnant females received a dose of 5 mg/kg body weight per day of METH-HCl in 0.9% saline, from gestational day (GD) 8 to 22. The control group to be used was pair fed and saline injected. Litters were randomly culled at PND 1 to 8 pups. Analysis of maternal body weight gain during pregnancy showed that females treated with METH had lower body weights than control-treated females. The body weight on PND 1, showed that animals treated with METH prenatally had smaller body weights than the control-treated animals and also that females weighed less than males. Prenatal exposure to METH did not alter the retinal levels of 3,4-dihydroxyphenylacetic acid (DOPAC) in the male group and the level of dopamine (DA) in both female and male groups when compared with their respective pair fed control groups during the first month of life. Correlating with the neurochemical data, no obvious changes on the localization of TH immunoreactivity in the rat retina at PND 7, 14, and 30 could be detected between control and METH-treated animals. Thus, exposure to METH disrupted this pattern in a gender-dependent manner. These data confirm previous observation that developing rats are protected against the adult type of METH-induced neurotoxicity. Therefore, conventional markers used for adult animals appear to be unsatisfactory to demarcate boundaries of the PND 1 to 30 critical periods.


Assuntos
Troca Materno-Fetal , Metanfetamina/toxicidade , Prenhez , Retina/efeitos dos fármacos , Retina/embriologia , Animais , Peso Corporal , Modelos Animais de Doenças , Dopaminérgicos/farmacologia , Feminino , Imuno-Histoquímica , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Retina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
5.
Ann N Y Acad Sci ; 1074: 604-19, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17105956

RESUMO

Since the development of different cell types in the retina occurs at different rates, it is possible that exposure to an exogenous substance may produce effects during one time period, but not during another. This study aims to analyze the effects of methamphetamine (METH) in the growth pattern of an experimental model as well as neurochemical and immunohistochemical parameters of the dopaminergic system of the rat retina. The three development stages chosen in this study are key markers in rat eye development. Rats were given 15 mg/kg body weight per day of METH as subcutaneous injections in 0.9% saline (3 mL/kg weight/day) from the day after birth PND 1 to PND 6, PND 13, and PND 29. Each daily dose was split into two. The control group was injected subcutaneously with saline. Both the schedule and volume for injecting saline in the control group were the same as for the METH-treated group. There were no significant differences in the total number of offspring per litter among treatment groups. All offspring had similar body weight at birth. Analysis of body weight on PND 1, showed that animals treated with METH had similar body weights to control-treated animals and females had smaller weights than males. For growth evolution, only litters with a sex ratio of four males and four females were used. Animals treated with METH had smaller body weights than the control-treated animals for all ages studied (PND 7, 14, and 30). Within the control group at PND 30, a significant difference was found in the body weight of females, which was lower when compared with males. For the postnatal model, 7 deaths occurred for the METH-exposed group. No deaths occurred in the control group in a total of 16 saline-injected litters comprising 186 pups. Although the levels of dopamine (DA) was within normal values for the postnatally exposed METH group when compared with its respective control group at PND 7 and 30, at PND 14 this was not the case: in this experimental group, the level of DA was lower than in the control group for both females and males. Support for this result was not evident from the TH immunoreactivity studies, probably because the methodology lacks the sensitivity to distinguish any mild effects, such as that observed in the postnatal model at PND 14. The level of the DA metabolite 3, 4-dihydroxyphenylacetic acid (DOPAC) remained unaffected at all ages studied, for both females and males. The results obtained in this study support the view that, during the critical periods in which the catecholamines can influence the development of neurones, METH transiently affects the pattern of the dopaminergic system in the developing retina.


Assuntos
Dopamina/metabolismo , Metanfetamina/toxicidade , Retina/crescimento & desenvolvimento , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Tamanho Corporal , Modelos Animais de Doenças , Feminino , Masculino , Cuidado Pós-Natal , Ratos , Ratos Endogâmicos BB , Retina/efeitos dos fármacos , Retina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
6.
Birth Defects Res A Clin Mol Teratol ; 73(6): 455-60, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15880787

RESUMO

BACKGROUND: The use of psychoactive drugs during adolescence and early adult life has increased in the last few decades. It is known that developmental exposure to psychostimulants affects the sensory systems, and the retina has been shown to be a target tissue. This work was conducted to evaluate the pattern of lipid peroxidation in the rat retina following prenatal exposure to methamphetamine (MA). METHODS: Pregnant female Wistar rats were given MA (5 mg/kg of body weight/day; SC, in 0.9% saline) from GD 8 to 22. Offspring were sacrificed at postnatal days (PNDs) 7, 14, and 21. The retinas were homogenized, and both the total antioxidant and superoxide dismutase (SOD) activities were measured by enzymatic-colorimetric methods. The lipid peroxidation byproducts (malondialdehyde [MDA] and MDA-like metabolites) were measured by the thiobarbituric acid test. RESULTS: Total antioxidant levels were lower in the MA group at PND 21 in both males and females. The activity of SOD was higher in PND 7 females from the MA group. MDA levels were higher in the MA group at PND 21 in both genders. CONCLUSIONS: These findings suggest that prenatal-induced MA toxicity in the retina may be related to lipid peroxidation processes and oxidative stress.


Assuntos
Peroxidação de Lipídeos/efeitos dos fármacos , Metanfetamina/farmacologia , Retina/efeitos dos fármacos , Animais , Feminino , Malondialdeído/metabolismo , Exposição Materna , Gravidez , Ratos , Ratos Wistar , Retina/enzimologia , Retina/metabolismo , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...