Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 319: 115677, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35816960

RESUMO

Metals are considered one of the biggest environmental problems, due to their toxicity and the complexity of removal. This study evaluated the bioaccumulation capacity of water contaminating metals by fungal isolates of Lentinus and Panus species, to elucidate the bioremediation processes of metal contaminated effluents. Initially, tests were performed with fungal isolates using a mixture of metals, aluminum, iron, copper, lead, chromium, nickel and zinc. Lentinus crinitus 154L.21 was the most promising fungus for the removal of metals in the mixture. Based on these data, the potential application of this fungus for the treatment of galvanic and tannery effluents was evaluated. For galvanic effluent, no detectable copper, chromium, and nickel was removed; however, for tannery effluents, reductions in aluminum concentrations from 204.1 to 3.7 mg L-1 (≅98% removal), chromium from 1199.6 to 20.4 mg L-1 (≅98% removal) and iron from 22.6 mg L-1 (100% removal) to an amount lower than the detection limit were observed. These data indicated that L. crinitus 154L.21 removes metals from industrial effluents, being an important route for bioremediation processes.


Assuntos
Metais Pesados , Níquel , Alumínio , Biodegradação Ambiental , Cromo/análise , Cobre , Florestas , Ferro , Metais , Metais Pesados/análise
2.
Waste Manag ; 141: 125-135, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35114563

RESUMO

Studies on the degradation dynamics of landfill leachate indicate that the microbial community profile is a valuable and sensitive tool for landfill monitoring programs. Although knowledge about the microbial community can improve the efficiency of leachate treatment systems, little is known about the microbial profile changes that occur throughout the leachate attenuation process. In the present work, an exploratory analysis of the microbial community profile of the MSW leachate treatment system in the municipality of Osório (Brazil) was conducted. In this way, a comprehensive analysis of chemical parameters, isotopic signature and microbial profile data were applied to monitor the changes in the structure of the microbial community throughout the leachate attenuation process and to describe the relationship between the microbial community structure and the attenuation of chemical and isotopic parameters. From data analysis, it was possible to assess the microbial community structure and relate it to the attenuation of chemical and isotopic parameters. Based on massive parallel 16S rRNA gene sequencing, it was possible to observe that each leachate treatment unit has a specific microbial consortium, reflecting the adaptation of different microorganisms to changes in leachate characteristics throughout treatment. From our results, we concluded that the structure of the microbial community is sensitive to the leachate composition and can be applied to study the municipal solid waste management system.

3.
Waste Manag ; 76: 591-605, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29459205

RESUMO

Leachate produced during an organic matter decomposition process has a complex composition and can cause contamination of surface and groundwaters adjacent to a landfill area. The monitoring of these areas is extremely important for the characterization of the leachate produced and to avoid or mitigate environmental damages. Thus, the present study has the objective of monitoring the area of a Brazilian landfill using conventional parameters (dissolved metals and anions in water) and alternative, stable carbon isotopes parameters (δ13C of dissolved organic and inorganic carbons in water) in addition to multivariate analysis techniques. The use of conventional and alternative parameters together with multivariate analysis showed that cells of the residues are at different phases of stabilization of the organic matter and probably already at C3 of the methanogenic phase of decomposition. In addition, the data showed that organic matter stabilization ponds present in the landfill are efficient and improve the quality of the leachate. Enrichment of the heavy 13C isotope in both surface and groundwater suggested contamination in two sampling sites.


Assuntos
Monitoramento Ambiental , Instalações de Eliminação de Resíduos , Brasil , Carbono , Isótopos de Carbono , Análise Multivariada , Eliminação de Resíduos , Poluentes Químicos da Água
4.
Environ Sci Pollut Res Int ; 24(26): 21398-21411, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28744679

RESUMO

In Brazil, landfills are commonly used as a method for the final disposal of waste that is compliant with the legislation. This technique, however, presents a risk to surface water and groundwater resources, owing to the leakage of metals, anions, and organic compounds. The geochemical monitoring of water resources is therefore extremely important, since the leachate can compromise the quality and use of surface water and groundwater close to landfills. In this paper, the results of analyses of metals, anions, ammonia, and physicochemical parameters were used to identify possible contamination of surface water and groundwater in a landfill area. A statistical multivariate approach was used. The values found for alkali metals, nitrate, and chloride indicate contamination in the regional groundwater and, moreover, surface waters also show variation when compared to the other background points, mainly for ammonia. Thus, the results of this study evidence the landfill leachate influence on the quality of groundwater and surface water in the study area.


Assuntos
Monitoramento Ambiental/métodos , Água Subterrânea/química , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análise , Recursos Hídricos , Amônia/análise , Brasil , Metais/análise , Eliminação de Resíduos/métodos
5.
Mol Biochem Parasitol ; 207(1): 10-8, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27150347

RESUMO

Trichomonas vaginalis is the aethiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease in the world. The purinergic signaling pathway is mediated by extracellular nucleotides and nucleosides that are involved in many biological effects as neurotransmission, immunomodulation and inflammation. Extracellular nucleotides can be hydrolyzed by a family of enzymes known as ectonucleotidases including the ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) family which hydrolyses nucleosides triphosphate and diphosphate as preferential substrates and ecto-5'-nucleotidase which catalyzes the conversion of monophosphates into nucleosides. In T. vaginalis the E-NTPDase and ecto-5'-nucleotidase activities upon adenine nucleotides have already been characterized in intact trophozoites but little is known concerning guanine nucleotides and nucleoside. These enzymes may exert a crucial role on nucleoside generation, providing the purine sources for the synthesis de novo of these essential nutrients, sustaining parasite growth and survival. In this study, we investigated the hydrolysis profile of guanine-related nucleotides and nucleoside in intact trophozoites from long-term-grown and fresh clinical isolates of T. vaginalis. Knowing that guanine nucleotides are also substrates for T. vaginalis ectoenzymes, we evaluated the profile of nucleotides consumption and guanosine uptake in trophozoites submitted to a serum limitation condition. Results show that guanine nucleotides (GTP, GDP, GMP) were substrates for T. vaginalis ectonucleotidases, with expected kinetic parameters for this enzyme family. Different T. vaginalis isolates (two from the ATCC and nine fresh clinical isolates) presented a heterogeneous hydrolysis profile. The serum culture condition increased E-NTPDase and ecto-5'-nucleotidase activities with high consumption of extracellular GTP generating enhanced GDP, GMP and guanosine levels as demonstrated by HPLC, with final accumulation of the nucleoside. The transcript levels of the five TvNTPDases gene sequences were analyzed by qRT-PCR and the highest gene expressions were found for TvNTPDase 2 and 4. The extracellular guanosine uptake was observed as (13C)GTP nucleotide into parasite DNA and it was lower than that observed for adenosine, labeled as (13C)ATP. These findings indicate the T. vaginalis preference for adenosine uptake and the accumulation of guanosine in the extracellular milieu, corroborating with HPLC data. Our data demonstrate, for the first time, the cascade of guanine nucleotides in T. vaginalis and open possibilities on the study of guanine-related purines other than the classical intracellular activity of G proteins for signal transduction.


Assuntos
5'-Nucleotidase/metabolismo , Adenosina Trifosfatases/metabolismo , Nucleotídeos de Guanina/metabolismo , Guanosina/metabolismo , Trichomonas vaginalis/metabolismo , 5'-Nucleotidase/antagonistas & inibidores , 5'-Nucleotidase/genética , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/genética , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Espaço Extracelular/metabolismo , Expressão Gênica , Guanosina Trifosfato/metabolismo , Hidrólise , Trichomonas vaginalis/efeitos dos fármacos , Trichomonas vaginalis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...