Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 63(9): 1107-1117, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38671548

RESUMO

DNA polymerase θ (Pol θ or POLQ) is primarily involved in repairing double-stranded breaks in DNA through an alternative pathway known as microhomology-mediated end joining (MMEJ) or theta-mediated end joining (TMEJ). Unlike other DNA repair polymerases, Pol θ is thought to be highly error-prone yet critical for cell survival. We have identified several POLQ gene variants from human melanoma tumors that experience altered DNA polymerase activity, including a propensity for incorrect nucleotide selection and reduced polymerization rates compared to WT Pol θ. Variants are 30-fold less efficient at incorporating a nucleotide during repair and up to 70-fold less accurate at selecting the correct nucleotide opposite a templating base. This suggests that aberrant Pol θ has reduced DNA repair capabilities and may also contribute to increased mutagenesis. Moreover, the variants were identified in established tumors, suggesting that cancer cells may use mutated polymerases to promote metastasis and drug resistance.


Assuntos
DNA Polimerase teta , DNA Polimerase Dirigida por DNA , Melanoma , Humanos , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , Melanoma/genética , Melanoma/enzimologia , Reparo do DNA , Mutação
2.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014040

RESUMO

DNA Polymerase θ (Pol θ or POLQ) is primarily involved in repairing double-stranded breaks in DNA through the alternative pathway known as microhomology-mediated end joining (MMEJ) or theta-mediated end joining (TMEJ). Unlike other DNA repair polymerases, Pol θ is thought to be highly error prone, yet critical for cell survival. We have identified several mutations in the POLQ gene from human melanoma tumors. Through biochemical analysis, we have demonstrated that all three cancer-associated variants experienced altered DNA polymerase activity including a propensity for incorrect nucleotide selection and reduced polymerization rates compared to WT Pol θ. Moreover, the variants are 30 fold less efficient at incorporating a nucleotide during repair and up to 70 fold less accurate at selecting the correct nucleotide opposite a templating base. Taken together, this suggests that aberrant Pol θ has reduced DNA repair capabilities and may also contribute to increased mutagenesis. While this may be beneficial to normal cell survival, the variants were identified in established tumors suggesting that cancer cells may use this promiscuous polymerase to its advantage to promote metastasis and drug resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...