Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 465: 114961, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38494127

RESUMO

The anterior insular cortex (AIC) comprises a region of sensory integration. It appears to detect salient events in order to guide goal-directed behavior, code tracking errors, and estimate the passage of time. Temporal processing in the AIC may be instantiated by the integration of representations of interoception. Projections between the AIC and the medial prefrontal cortex (mPFC) - found both in rats and humans - also suggest a possible role for these structures in the integration of autonomic responses during ongoing behavior. Few studies, however, have investigated the role of AIC and mPFC in decision-making and time estimation tasks. Moreover, their findings are not consistent, so the relationship between temporal decision-making and those areas remains unclear. The present study employed bilateral inactivations to explore the role of AIC and prelimbic cortex (PL) in rats during a temporal decision-making task. In this task, two levers are available simultaneously (but only one is active), one predicting reinforcement after a short, and the other after a long-fixed interval. Optimal performance requires a switch from the short to the long lever after the short-fixed interval elapsed and no reinforcement was delivered. Switch behavior from the short to the long lever was dependent on AIC and PL. During AIC inactivation, switch latencies became more variable, while during PL inactivation switch latencies became both more variable and less accurate. These findings point to a dissociation between AIC and PL in temporal decision-making, suggesting that the AIC is important for temporal precision, and PL is important for both temporal accuracy and precision.


Assuntos
Córtex Cerebral , Jogo de Azar , Humanos , Ratos , Animais , Córtex Cerebral/fisiologia , Córtex Pré-Frontal/fisiologia , Córtex Insular
2.
Neuropharmacology ; 162: 107796, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31563465

RESUMO

Behavioral arrest is an essential feature of an animal's survival. Acoustic startle reflex (ASR) is an involuntary whole-body contraction of the skeletal musculature to an unexpected auditory stimulus. This strong reaction can be decreased by prepulse inhibition (PPI) phenomenon; which, for example, is important in reducing distraction during the processing of sensory input. Several brainstem regions are involved in the PPI and startle reflex, but a previous study from our laboratory showed that the main input structure of Basal Ganglia (BG) - the striatum - modulates PPI. The pallidum and nigra are connected with striatum and these brainstem structures. Here, we investigated the role of these striatum outputs in the brain regions on startle amplitude, PPI regulation, and exploratory behavior in Wistar rats. The temporary bilateral inhibition of the globus pallidus (GP) by muscimol lead to motor impairment, without disturbing startle amplitude or PPI. Similarly, inhibition of the entopeduncular nucleus (EPN) specifically disrupted the exploratory behavior. On the other hand, the substantia nigra reticulata (SNr) inhibition interfered in all measured behaviors: decreased the PPI percentage, increased ASR and impaired the locomotor activity. The nigra is a key BG output structure which projects to the thalamus and brainstem. These findings extend our previous study showing that the striatum neurons expressing D1 receptors involvement in PPI occurs via the direct pathway to SNr, but not to the pallidum which more likely occurs by its connection with the caudal pontine nucleus, superior colliculus and/or pedunculopontine nucleus pivotal structures for startle reflex modulation.


Assuntos
Agonistas de Receptores de GABA-A/farmacologia , Globo Pálido/fisiologia , Locomoção/fisiologia , Muscimol/farmacologia , Parte Reticular da Substância Negra/fisiologia , Inibição Pré-Pulso/fisiologia , Reflexo de Sobressalto/fisiologia , Animais , Globo Pálido/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Microinjeções , Parte Reticular da Substância Negra/efeitos dos fármacos , Inibição Pré-Pulso/efeitos dos fármacos , Ratos , Ratos Wistar , Reflexo de Sobressalto/efeitos dos fármacos
3.
Front Neurosci ; 12: 653, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333717

RESUMO

Alzheimer's disease (AD) is characterized by multiple cognitive deficits including memory and sensorimotor gating impairments as a result of neuronal and synaptic loss. The endocannabinoid system plays an important role in these deficits but little is known about its influence on the molecular mechanism regarding phosphorylated tau (p-tau) protein accumulation - one of the hallmarks of AD -, and on the density of synaptic proteins. Thus, the aim of this study was to investigate the preventive effects of anandamide (N-arachidonoylethanolamine, AEA) on multiple cognitive deficits and on the levels of synaptic proteins (syntaxin 1, synaptophysin and synaptosomal-associated protein, SNAP-25), cannabinoid receptor type 1 (CB1) and molecules related to p-tau degradation machinery (heat shock protein 70, HSP70), and Bcl2-associated athanogene (BAG2) in an AD-like sporadic dementia model in rats using intracerebroventricular (icv) injection of streptozotocin (STZ). Our hypothesis is that AEA could interact with HSP70, modulating the level of p-tau and synaptic proteins, preventing STZ-induced cognitive impairments. Thirty days after receiving bilateral icv injections of AEA or STZ or both, the cognitive performance of adult male Wistar rats was evaluated in the object recognition test, by the escape latency in the elevated plus maze (EPM), by the tone and context fear conditioning as well as in prepulse inhibition tests. Subsequently, the animals were euthanized and their brains were removed for histological analysis or for protein quantification by Western Blotting. The behavioral results showed that STZ impaired recognition, plus maze and tone fear memories but did not affect contextual fear memory and prepulse inhibition. Moreover, AEA prevented recognition and non-associative emotional memory impairments induced by STZ, but did not influence tone fear conditioning. STZ increased the brain ventricular area and this enlargement was prevented by AEA. Additionally, STZ reduced the levels of p-tau (Ser199/202) and increased p-tau (Ser396), although AEA did not affect these alterations. HSP70 was found diminished only by STZ, while BAG2 levels were decreased by STZ and AEA. Synaptophysin, syntaxin and CB1 receptor levels were reduced by STZ, but only syntaxin was recovered by AEA. Altogether, albeit AEA failed to modify some AD-like neurochemical alterations, it partially prevented STZ-induced cognitive impairments, changes in synaptic markers and ventricle enlargement. This study showed, for the first time, that the administration of an endocannabinoid can prevent AD-like effects induced by STZ, boosting further investigations about the modulation of endocannabinoid levels as a therapeutic approach for AD.

4.
J Psychopharmacol ; 31(4): 505-513, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28114835

RESUMO

Prepulse inhibition (PPI) is a behavioral test in which the startle reflex response to a high-intensity stimulus (pulse) is inhibited by the prior presentation of a weak stimulus (prepulse). The classic neural circuitry that mediates startle response is localized in the brainstem; however, recent studies point to the contribution of structures involved in higher cognitive functions in regulating the sensorimotor gating, particularly forebrain regions innervated by dopaminergic nuclei. The aim of the present study was to verify the role of dorsal striatum (DS) and dopaminergic transmitting mediated by D1 and D2 receptors on PPI test in rats. DS inactivation induced by muscimol injection did not affect PPI (%PPI and startle response), although it impaired the locomotor activity and caused catalepsy. Infusion of D1-like antagonist SCH23390 impaired %PPI but did not disturb the startle response and locomotor activity evaluated immediately after PPI test. D2 antagonist microinjection (sulpiride) did not affect %PPI and startle response, but impaired motor activity. These results point to an important role of DS, probably mediated by direct basal ganglia pathway, on modulation of sensorimotor gating, in accordance with clinical studies showing PPI deficits in schizophrenia, Tourette syndrome, and compulsive disorders - pathologies related to basal ganglia dysfunctions.


Assuntos
Neurônios/metabolismo , Inibição Pré-Pulso/fisiologia , Receptores de Dopamina D1/metabolismo , Filtro Sensorial/fisiologia , Corno Dorsal da Medula Espinal/metabolismo , Estimulação Acústica/métodos , Animais , Benzazepinas/farmacologia , Dopamina/metabolismo , Antagonistas de Dopamina/farmacologia , Masculino , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Neurônios/efeitos dos fármacos , Inibição Pré-Pulso/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de Dopamina D2/metabolismo , Reflexo de Sobressalto/efeitos dos fármacos , Reflexo de Sobressalto/fisiologia , Filtro Sensorial/efeitos dos fármacos , Corno Dorsal da Medula Espinal/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...