Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Signal Transduct Target Ther ; 5(1): 5, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-32296029

RESUMO

Recent data indicate that IGF1R/IRS signaling is a potential therapeutic target in BCR-ABL1-negative myeloproliferative neoplasms (MPN); in this pathway, IRS2 is involved in the malignant transformation induced by JAK2V617F, and upregulation of IGF1R signaling induces the MPN phenotype. NT157, a synthetic compound designed as an IGF1R-IRS1/2 inhibitor, has been shown to induce antineoplastic effects in solid tumors. Herein, we aimed to characterize the molecular and cellular effects of NT157 in JAK2V617F-positive MPN cell lines (HEL and SET2) and primary patient hematopoietic cells. In JAK2V617F cell lines, NT157 decreased cell viability, clonogenicity, and cell proliferation, resulting in increases in apoptosis and cell cycle arrest in the G2/M phase (p < 0.05). NT157 treatment inhibited IRS1/2, JAK2/STAT, and NFκB signaling, and it activated the AP-1 complex, downregulated four oncogenes (CCND1, MYB, WT1, and NFKB1), and upregulated three apoptotic-related genes (CDKN1A, FOS, and JUN) (p < 0.05). NT157 induced genotoxic stress in a JAK2/STAT-independent manner. NT157 inhibited erythropoietin-independent colony formation in cells from polycythemia vera patients (p < 0.05). These findings further elucidate the mechanism of NT157 action in a MPN context and suggest that targeting IRS1/2 proteins may represent a promising therapeutic strategy for MPN.


Assuntos
Janus Quinase 2/genética , Transtornos Mieloproliferativos/tratamento farmacológico , Policitemia Vera/tratamento farmacológico , Pirogalol/análogos & derivados , Sulfonamidas/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Substratos do Receptor de Insulina/antagonistas & inibidores , Proteínas Substratos do Receptor de Insulina/genética , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Policitemia Vera/genética , Policitemia Vera/patologia , Pirogalol/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT5/antagonistas & inibidores , Fator de Transcrição STAT5/genética
2.
Cancer Lett ; 456: 59-68, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042587

RESUMO

The IGF1R/IRS1 signaling is activated in acute lymphoblastic leukemia (ALL) and can be targeted by the pharmacological inhibitors NT157 (IGF1R-IRS1/2 inhibitor) and OSI-906 (IGF1R/IR inhibitor). Here we investigate the cellular and molecular effects of NT157 and OSI-906 in ALL cells. NT157 and OSI-906 treatment reduced viability, proliferation and cell cycle progression in ALL cell lines. Similarly, in primary samples of patients with ALL, both OSI-906 and NT157 reduced viability, but only NT157 induced apoptosis. NT157 and OSI-906 did not show cytotoxicity in primary samples from healthy donor. NT157 and OSI-906 significantly decreased Jurkat cell migration, but did not modulate Namalwa migration. Consistent with the more potent effect of NT157 on cells, NT157 significantly modulated expression of 25 genes related to the MAPK signaling pathway in Jurkat cells, including oncogenes and tumor suppressor genes. Both compounds inhibited mTOR and p70S6K activity, but only NT157 inhibited AKT and 4-EBP1 activation. In summary, in ALL cells, NT157 has cytotoxic activity, whereas OSI-906 is cytostatic. NT157 has a stronger effect on ALL cells, and thus the direct inhibition of IRS1 may be a potential therapeutic target in ALL.


Assuntos
Antineoplásicos/farmacologia , Imidazóis/farmacologia , Proteínas Substratos do Receptor de Insulina/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Pirazinas/farmacologia , Pirogalol/análogos & derivados , Receptor IGF Tipo 1/antagonistas & inibidores , Sulfonamidas/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Adulto , Idoso , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Células Jurkat , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Pirogalol/farmacologia , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas , Adulto Jovem
3.
Clinics (Sao Paulo) ; 73(suppl 1): e566s, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30328953

RESUMO

The insulin receptor substrate (IRS) proteins are a family of cytoplasmic proteins that integrate and coordinate the transmission of signals from the extracellular to the intracellular environment via transmembrane receptors, thus regulating cell growth, metabolism, survival and proliferation. The PI3K/AKT/mTOR and MAPK signaling pathways are the best-characterized downstream signaling pathways activated by IRS signaling (canonical pathways). However, novel signaling axes involving IRS proteins (noncanonical pathways) have recently been identified in solid tumor and hematologic neoplasm models. Insulin receptor substrate-1 (IRS1) and insulin receptor substrate-2 (IRS2) are the best-characterized IRS proteins in hematologic-related processes. IRS2 binds to important cellular receptors involved in normal hematopoiesis (EPOR, MPL and IGF1R). Moreover, the identification of IRS1/ABL1 and IRS2/JAK2V617F interactions and their functional consequences has opened a new frontier for investigating the roles of the IRS protein family in malignant hematopoiesis. Insulin receptor substrate-4 (IRS4) is absent in normal hematopoietic tissues but may be expressed under abnormal conditions. Moreover, insulin receptor substrate-5 (DOK4) and insulin receptor substrate-6 (DOK5) are linked to lymphocyte regulation. An improved understanding of the signaling pathways mediated by IRS proteins in hematopoiesis-related processes, along with the increased development of agonists and antagonists of these signaling axes, may generate new therapeutic approaches for hematological diseases. The scope of this review is to recapitulate and review the evidence for the functions of IRS proteins in normal and malignant hematopoiesis.


Assuntos
Hematopoese/fisiologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Leucemia Linfoide/metabolismo , Leucemia Mieloide/metabolismo , Transdução de Sinais/fisiologia , Humanos , Proteínas Substratos do Receptor de Insulina/fisiologia , Leucemia Linfoide/fisiopatologia , Leucemia Mieloide/fisiopatologia
4.
Cell Death Dis ; 9(3): 311, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472557

RESUMO

The recurrent gain-of-function JAK2V617F mutation confers growth factor-independent proliferation for hematopoietic cells and is a major contributor to the pathogenesis of myeloproliferative neoplasms (MPN). The lack of complete response in most patients treated with the JAK1/2 inhibitor ruxolitinib indicates the need for identifying novel therapeutic strategies. Metformin is a biguanide that exerts selective antineoplastic activity in hematological malignancies. In the present study, we investigate and compare effects of metformin and ruxolitinib alone and in combination on cell signaling and cellular functions in JAK2V617F-positive cells. In JAK2V617F-expressing cell lines, metformin treatment significantly reduced cell viability, cell proliferation, clonogenicity, and cellular oxygen consumption and delayed cell cycle progression. Metformin reduced cyclin D1 expression and RB, STAT3, STAT5, ERK1/2 and p70S6K phosphorylation. Metformin plus ruxolitinib demonstrated more intense reduction of cell viability and induction of apoptosis compared to monotherapy. Notably, metformin reduced Ba/F3 JAK2V617F tumor burden and splenomegaly in Jak2V617F knock-in-induced MPN mice and spontaneous erythroid colony formation in primary cells from polycythemia vera patients. In conclusion, metformin exerts multitarget antileukemia activity in MPN: downregulation of JAK2/STAT signaling and mitochondrial activity. Our exploratory study establishes novel molecular mechanisms of metformin and ruxolitinib action and provides insights for development of alternative/complementary therapeutic strategies for MPN.


Assuntos
Antineoplásicos/administração & dosagem , Janus Quinase 2/metabolismo , Metformina/administração & dosagem , Transtornos Mieloproliferativos/tratamento farmacológico , Animais , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclina D1/genética , Ciclina D1/metabolismo , Feminino , Técnicas de Introdução de Genes , Humanos , Janus Quinase 2/genética , Camundongos , Camundongos Endogâmicos NOD , Mutação de Sentido Incorreto , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Transtornos Mieloproliferativos/fisiopatologia , Fosforilação/efeitos dos fármacos , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo
5.
Clinics ; 73(supl.1): e566s, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-974958

RESUMO

The insulin receptor substrate (IRS) proteins are a family of cytoplasmic proteins that integrate and coordinate the transmission of signals from the extracellular to the intracellular environment via transmembrane receptors, thus regulating cell growth, metabolism, survival and proliferation. The PI3K/AKT/mTOR and MAPK signaling pathways are the best-characterized downstream signaling pathways activated by IRS signaling (canonical pathways). However, novel signaling axes involving IRS proteins (noncanonical pathways) have recently been identified in solid tumor and hematologic neoplasm models. Insulin receptor substrate-1 (IRS1) and insulin receptor substrate-2 (IRS2) are the best-characterized IRS proteins in hematologic-related processes. IRS2 binds to important cellular receptors involved in normal hematopoiesis (EPOR, MPL and IGF1R). Moreover, the identification of IRS1/ABL1 and IRS2/JAK2V617F interactions and their functional consequences has opened a new frontier for investigating the roles of the IRS protein family in malignant hematopoiesis. Insulin receptor substrate-4 (IRS4) is absent in normal hematopoietic tissues but may be expressed under abnormal conditions. Moreover, insulin receptor substrate-5 (DOK4) and insulin receptor substrate-6 (DOK5) are linked to lymphocyte regulation. An improved understanding of the signaling pathways mediated by IRS proteins in hematopoiesis-related processes, along with the increased development of agonists and antagonists of these signaling axes, may generate new therapeutic approaches for hematological diseases. The scope of this review is to recapitulate and review the evidence for the functions of IRS proteins in normal and malignant hematopoiesis.


Assuntos
Humanos , Transdução de Sinais/fisiologia , Leucemia Linfoide/metabolismo , Leucemia Mieloide/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Hematopoese/fisiologia , Leucemia Linfoide/fisiopatologia , Leucemia Mieloide/fisiopatologia , Proteínas Substratos do Receptor de Insulina/fisiologia
6.
Heliyon ; 3(9): e00405, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29034341

RESUMO

Acute lymphoblastic leukemia (ALL) is a hematological malignancy characterized by abnormal proliferation and accumulation of lymphoblasts in the hematopoietic system. Stathmin 1 is a proliferation marker for normal lymphocytes, which has been described as highly expressed in ALL patients and functionally important for leukemia phenotype. In the present study, we expand our previous observations and aim to investigate Stathmin 1 expression and its impact on laboratory features and clinical outcomes in an independent cohort of ALL patients, and to verify the effects of paclitaxel treatment on Stathmin 1 phosphorylation and cell viability in ALL cell lines. In ALL patients, Stathmin 1 expression was significantly increased, associated with lower age onset and positively correlated with white blood cell counts, but did not impact on clinical outcomes. Functional assays revealed that paclitaxel induces Stathmin 1 phosphorylation at serine 16 (an inhibitory site), microtubule stability and apoptosis in Jurkat and Namalwa cell lines. Paclitaxel treatment did not modulate cell viability of normal peripheral blood leukocytes. In conclusion, our data confirm increased levels of Stathmin 1 in ALL patients and that therapeutic doses of paclitaxel inhibits Stathmin 1 function and promote microtubule stability and apoptosis in ALL cells.

7.
J Cell Biochem ; 118(7): 1774-1781, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27987331

RESUMO

Insulin-like growth factor 1 (IGF1) and its receptor IGF1R regulate normal cell growth and contribute to cell transformation through activation of downstream signaling pathways. In fibroblast cells, insulin receptor substrate 1 (IRS1), through IGF1 signaling, was found to be the key protein for nuclear translocation of ß-catenin and MYC transcription activation. We herein investigated the IRS1/ß-catenin axis in acute lymphoblastic leukemia (ALL) cells. Samples were obtained from 45 patients with ALL and 13 healthy donors. ALL cell lines were used. Gene expression was measured by quantitative PCR. Protein expression, associations, and cellular localization were evaluated by immunoprecipitation, subcellular fractionation, and confocal microscopy. Cells were submitted to IGF1 stimulation and/or IGF1R pharmacological inhibition (OSI-906). IRS1, ß-catenin, and MYC mRNA expression were significantly elevated in ALL patients, compared to normal controls. MYC mRNA expression positively correlated with ß-catenin and IRS1. Increased age and MYC expression negatively affected overall survival by univariate analysis. Total and phospho-IGF1R and IRS1, MYC and ß-catenin protein expression were higher in ALL cells, compared to normal peripheral blood mononuclear cells (PBMC). IRS1 and ß-catenin were found to be colocalized in the nuclei and the cytoplasm of ALL cell lines, whereas both proteins were only slightly detected in the cytoplasm of normal PBMC. In Jurkat cells, a constitutive IRS1 and ß-catenin protein interaction were observed; OSI-906 treatment decreased IGF1R tyrosine phosphorylation, IRS1 expression and phosphorylation, nuclear translocation of ß-catenin, IRS1 and ß-catenin association, and MYC protein expression. In conclusion, the IRS1/ß-catenin axis is activated in ALL cells. J. Cell. Biochem. 118: 1774-1781, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas Substratos do Receptor de Insulina/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , beta Catenina/genética , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/fisiologia , Adolescente , Adulto , Western Blotting , Humanos , Imidazóis/farmacologia , Imunoprecipitação , Proteínas Substratos do Receptor de Insulina/metabolismo , Microscopia Confocal , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Pirazinas/farmacologia , RNA Mensageiro/genética , Receptor IGF Tipo 1 , Receptores de Somatomedina/genética , Receptores de Somatomedina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Adulto Jovem , beta Catenina/metabolismo
8.
Leuk Res ; 48: 26-31, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27447890

RESUMO

Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasm of the hematopoietic stem cell characterized by presence of the oncoprotein BCR-ABL1, which have constitutive tyrosine kinase activity. BCR-ABL1 activation induces aurora kinase A (AURKA) and aurora kinase B (AURKB) expression, which are serine-threonine kinases that play an important function in chromosome alignment, segregation and cytokinesis during mitosis. Acquisition of resistance to tyrosine kinase inhibitors has emerged as a problem for CML patients and the identification of novel targets with an important contribution for CML phenotype is of interest. In the present study, we explored the cellular effects of reversine, an AURKA and AURKB inhibitor, in the BCR-ABL1+ K562 cells. Our results indicate that reversine reduces AURKA and AURKB expression, leads to reduction of cell viability and increased apoptosis in a dose- and time-dependent manner, as well as, induces mitotic catastrophe in K562 cells. Our preclinical study establishes that reversine presents an effective antileukemia activity against K562 cells and provide new insights on anticancer opportunities for CML.


Assuntos
Apoptose/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Mitose/efeitos dos fármacos , Morfolinas/farmacologia , Purinas/farmacologia , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase B/antagonistas & inibidores , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Morfolinas/uso terapêutico , Inibidores de Proteínas Quinases , Purinas/uso terapêutico
9.
Med Oncol ; 31(5): 931, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24683001

RESUMO

We compared the levels of AURKA and AURKB in 24 (mantle cell lymphoma) MCL patients harboring 8q abnormalities and its relationship with MYCC gene status. Two distinct subgroups were observed, in terms of MYCC expression. Except for the patients with Burkitt's-like translocation, none of the patients harboring 8q abnormalities, including balanced translocations or duplications of MYCC band, identified both by G-banding and SKY, showed differential expression levels of MYCC. These previous findings also reflected in the differential expression of AURKA and AURKB genes. We found that AURKA and AURKB mRNA were expressed at significantly higher levels in MCL patients harboring Burkitt's-like translocation, when compared to patients with 8q rearrangements. The high expression of aurora kinase genes is reported to be associated with some parameters of clinical oncologic aggressiveness, such as high histological grade, invasion and increased rates of metastasis in several types of cancers. It is possible that in MCL patients expressing abnormal levels of MYCC together with a high expression of AURKA might offer some resistant to the conventional therapy purposes. Thus, aurora kinase inhibitors may also be considered for this specific subgroup on MCL, whose aggressive clinical course resembles high-grade lymphoma.


Assuntos
Aurora Quinase A/metabolismo , Aurora Quinase B/metabolismo , Linfoma de Burkitt/genética , Cromossomos Humanos Par 8/genética , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/metabolismo , Translocação Genética/genética , Idoso , Idoso de 80 Anos ou mais , Aurora Quinase A/genética , Aurora Quinase B/genética , Western Blotting , Mapeamento Cromossômico , Feminino , Seguimentos , Humanos , Linfoma de Célula do Manto/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Proteínas Proto-Oncogênicas c-myc/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...