Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 31: 101158, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38074413

RESUMO

Over the last decade, there has been a growing interest in intrabodies and their therapeutic potential. Intrabodies are antibody fragments that are expressed inside a cell to target intracellular antigens. In the context of intracellular protein misfolding and aggregation, such as tau pathology in Alzheimer's disease, intrabodies have become an interesting approach as there is the possibility to target early stages of aggregation. As such, we engineered three anti-tau monoclonal antibodies into single-chain variable fragments for cytoplasmic expression and activity: PT51, PT77, and hTau21. Due to the reducing environment of the cytoplasm, single-chain variable fragment (scFv) aggregation is commonly observed. Therefore, we also performed complementarity-determining region (CDR) grafting into three different stable frameworks to rescue solubility and intracellular binding. All three scFvs retained binding to tau after cytoplasmic expression in HEK293 cells, in at least one of the frameworks. Subsequently, we show their capacity to interfere with either mouse or mutant human tau aggregation in two different primary mouse neuron models and organotypic hippocampal slice cultures. Collectively, our work extends the current knowledge on intracellular tau targeting with intrabodies, providing three scFv intrabodies that can be used as immunological tools to target tau inside cells.

2.
J Proteome Res ; 22(4): 1309-1321, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36888912

RESUMO

O-ß-linked N-acetylglucosaminylation (O-GlcNAcylation) modulates tau phosphorylation and aggregation: the pharmacological increase of tau O-GlcNAcylation upon treatment with inhibitors of O-GlcNAc hydrolase (OGA) constitutes a potential strategy to tackle neurodegenerative diseases. Analysis of tau O-GlcNAcylation could potentially be used as a pharmacodynamic biomarker both in preclinical and clinical studies. The goal of the current study was to confirm tau O-GlcNAcylation at S400 as a pharmacodynamic readout of OGA inhibition in P301S transgenic mice overexpressing human tau and treated with the OGA inhibitor Thiamet G and to explore if additional O-GlcNAcylation sites on tau could be identified. As a first step, an immunoprecipitation-liquid chromatography-mass spectrometry (IP-LC-MS) methodology was developed to monitor changes in O-GlcNAcylation around S400 of tau in mouse brain homogenate (BH) extracts. Second, additional O-GlcNAc sites were identified in in-house produced recombinant O-GlcNAcylated human tau at relatively high concentrations, thereby facilitating collection of informative LC-MS data for identification of low-concentration O-GlcNAc-tryptic tau peptides in human transgenic mouse BH extracts. This strategy enabled, for the first time, identification of three low abundant N-terminal and mid-domain O-GlcNAc sites of tau (at S208, S191, and S184 or S185) in human transgenic mouse BH. Data are openly available at data.mendeley.com (doi: 10.17632/jp57yk9469.1; doi: 10.17632/8n5j45dnd8.1; doi: 10.17632/h5vdrx4n3d.1).


Assuntos
beta-N-Acetil-Hexosaminidases , Proteínas tau , Animais , Humanos , Camundongos , Acetilglucosamina/farmacologia , beta-N-Acetil-Hexosaminidases/genética , Camundongos Transgênicos , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Fosforilação , Proteínas tau/química , Espectrometria de Massas em Tandem
3.
J Alzheimers Dis ; 93(1): 151-167, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970909

RESUMO

BACKGROUND: Clearance of tau seeds by immunization with tau antibodies is currently evaluated as therapeutic strategy to block the spreading of tau pathology in Alzheimer's disease and other tauopathies. Preclinical evaluation of passive immunotherapy is performed in different cellular culture systems and in wild-type and human tau transgenic mouse models. Depending on the preclinical model used, tau seeds or induced aggregates can either be of mouse, human or mixed origin. OBJECTIVE: We aimed to develop human and mouse tau-specific antibodies to discriminate between the endogenous tau and the introduced form in preclinical models. METHODS: Using hybridoma technology, we developed human and mouse tau-specific antibodies that were then used to develop several assays to specifically detect mouse tau. RESULTS: Four antibodies, mTau3, mTau5, mTau8, and mTau9, with a high degree of specificity for mouse tau were identified. Additionally, their potential application in highly sensitive immunoassays to measure tau in mouse brain homogenate and cerebrospinal fluid is illustrated, as well as their application for specific endogenous mouse tau aggregation detection. CONCLUSION: The antibodies reported here can be very important tools to better interpret the results obtained from different model systems as well as to study the role of endogenous tau in tau aggregation and pathology observed in the diverse mouse models available.


Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Humanos , Animais , Proteínas tau/metabolismo , Tauopatias/patologia , Doença de Alzheimer/patologia , Camundongos Transgênicos , Modelos Animais de Doenças , Anticorpos Monoclonais , Encéfalo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...