Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 60(23): 1797-1807, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34080848

RESUMO

DNA-protein cross-links (DPCs) are unusually bulky DNA lesions that form when cellular proteins become trapped on DNA following exposure to ultraviolet light, free radicals, aldehydes, and transition metals. DPCs can also form endogenously when naturally occurring epigenetic marks [5-formyl cytosine (5fC)] in DNA react with lysine and arginine residues of histones to form Schiff base conjugates. Our previous studies revealed that DPCs inhibit DNA replication and transcription but can undergo proteolytic cleavage to produce smaller DNA-peptide conjugates. We have shown that 5fC-conjugated DNA-peptide cross-links (DpCs) placed within the CXA sequence (X = DpC) can be bypassed by human translesion synthesis (TLS) polymerases η and κ in an error-prone manner. However, the local nucleotide sequence context can have a strong effect on replication bypass of bulky lesions by influencing the geometry of the ternary complex among the DNA template, polymerase, and the incoming dNTP. In this work, we investigated polymerase bypass of 5fC-DNA-11-mer peptide cross-links placed in seven different sequence contexts (CXC, CXG, CXT, CXA, AXA, GXA, and TXA) in the presence of human TLS polymerase η. Primer extension products were analyzed by gel electrophoresis, and steady-state kinetics of the misincorporation of dAMP opposite the DpC lesion in different base sequence contexts was investigated. Our results revealed a strong impact of nearest neighbor base identity on polymerase η activity in the absence and presence of a DpC lesion. Molecular dynamics simulations were used to structurally explain the experimental findings. Our results suggest a possible role of local DNA sequence in promoting TLS-related mutational hot spots in the presence and absence of DpC lesions.


Assuntos
Citosina/análogos & derivados , Reparo do DNA/fisiologia , DNA/química , Arginina/química , Sequência de Bases/genética , Citosina/química , Adutos de DNA/química , Dano ao DNA/fisiologia , Replicação do DNA/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Histonas/metabolismo , Humanos , Cinética , Lisina/química , Mutação/genética , Peptídeos/química
2.
Chem Res Toxicol ; 34(1): 119-131, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33381973

RESUMO

Smoking is a leading cause of lung cancer, accounting for 81% of lung cancer cases. Tobacco smoke contains over 5000 compounds, of which more than 70 have been classified as human carcinogens. Of the many tobacco smoke constituents, 1,3-butadiene (BD) has a high cancer risk index due to its tumorigenic potency and its abundance in cigarette smoke. The carcinogenicity of BD has been attributed to the formation of several epoxide metabolites, of which 1,2,3,4-diepoxybutane (DEB) is the most toxic and mutagenic. DEB is formed by two oxidation reactions carried out by cytochrome P450 monooxygenases, mainly CYP2E1. Glutathione-S-transferase theta 1 (GSTT1) facilitates the conjugation of DEB to glutathione as the first step of its detoxification and subsequent elimination via the mercapturic acid pathway. Human biomonitoring studies have revealed a strong association between GSTT1 copy number and urinary concentrations of BD-mercapturic acids, suggesting that it plays an important role in the metabolism of BD. To determine the extent that GSTT1 genotype affects the susceptibility of individuals to the toxic and genotoxic properties of DEB, GSTT1 negative and GSTT1 positive HapMap lymphoblastoid cell lines were treated with DEB, and the extent of apoptosis and micronuclei (MN) formation was assessed. These toxicological end points were compared to the formation of DEB-GSH conjugates and 1,4-bis-(guan-7-yl)-2,3-butanediol (bis-N7G-BD) DNA-DNA cross-links. GSTT1 negative cell lines were more sensitive to DEB-induced apoptosis as compared to GSTT1 positive cell lines. Consistent with the protective effect of GSH conjugation against DEB-derived apoptosis, GSTT1 positive cell lines formed significantly more DEB-GSH conjugate than GSTT1 negative cell lines. However, GSTT1 genotype did not affect formation of MN or bis-N7G-BD cross-links. These results indicate that GSTT1 genotype significantly influences BD metabolism and acute toxicity.


Assuntos
DNA/metabolismo , Compostos de Epóxi/metabolismo , Glutationa Transferase/metabolismo , Linhagem Celular , DNA/química , Adutos de DNA/química , Adutos de DNA/metabolismo , Compostos de Epóxi/síntese química , Compostos de Epóxi/química , Genótipo , Glutationa/química , Glutationa/metabolismo , Glutationa Transferase/genética , Humanos , Estrutura Molecular
3.
Biopolymers ; 112(1): e23405, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33098572

RESUMO

Cellular exposure to tobacco-specific nitrosamines causes formation of promutagenic O6 -[4-oxo-4-(3-pyridyl)but-1-yl]guanine (O6 -POB-G) and O6 -methylguanine (O6 -Me-G) adducts in DNA. These adducts can be directly repaired by O6 -alkylguanine-DNA alkyltransferase (AGT). Repair begins by flipping the damaged base out of the DNA helix. AGT binding and base-flipping have been previously studied using pyrrolocytosine as a fluorescent probe paired to the O6 -alkylguanine lesion, but low fluorescence yield limited the resolution of steps in the repair process. Here, we utilize the highly fluorescent 6-phenylpyrrolo-2'-deoxycytidine (6-phenylpyrrolo-C) to investigate AGT-DNA interactions. Synthetic oligodeoxynucleotide duplexes containing O6 -POB-G and O6 -Me-G adducts were placed within the CpG sites of codons 158, 245, and 248 of the p53 tumor suppressor gene and base-paired to 6-phenylpyrrolo-C in the opposite strand. Neighboring cytosine was either unmethylated or methylated. Stopped-flow fluorescence measurements were performed by mixing the DNA duplexes with C145A or R128G AGT variants. We observe a rapid, two-step, nearly irreversible binding of AGT to DNA followed by two slower steps, one of which is base-flipping. Placing 5-methylcytosine immediately 5' to the alkylated guanosine causes a reduction in rate constant of nucleotide flipping. O6 -POB-G at codon 158 decreased the base flipping rate constant by 3.5-fold compared with O6 -Me-G at the same position. A similar effect was not observed at other codons.


Assuntos
Citosina/química , Reparo do DNA , Corantes Fluorescentes/química , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Alquilação , Pareamento de Bases , Biocatálise , Ilhas de CpG/genética , Citidina/análogos & derivados , Citidina/química , Adutos de DNA/química , Adutos de DNA/metabolismo , Cinética , Mutagênese Sítio-Dirigida , Pirróis/química , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...