Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
J Pharm Biomed Anal ; 242: 116010, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364345

RESUMO

In this study, an alternative method to compendial analytical procedures with enhanced detection and separation capabilities was validated for the quality assessment of glutathione (GSH) drug substance. The related impurities A, B, C, and D present in GSH drug substance were characterized using a one-dimension proton nuclear magnetic resonance (1D 1H NMR) method on a 600 MHz spectrometer equipped with a liquid nitrogen cryoprobe. Two sample preparations at different pH were optimized to ensure the unambiguous identification of different impurities in the GSH samples. Specifically, impurities A and C in a GSH sample can be tested at pH 3.0, while pH 7.4 is more suitable for testing impurities B and D. The quantitative NMR (qNMR) method was validated following International Council for Harmonisation (ICH) guidelines. The limit of detection (LOD) was less than 0.1% wt for an individual impurity, and the limit of quantitation (LOQ) ranged from 0.14 to 0.24% wt, using about 14 min experimental time per spectrum. Following validation, the qNMR method was applied to assess different commercial GSH bulk substance samples, an in-house compounded GSH drug product, and a GSH dietary supplement product. The method was also applied to monitor GSH degradation (hydrolysis and oxidation) over time to provide quantitative information on GSH degradation and stability. The results suggest that the qNMR method can serve as a highly specific and efficient orthogonal tool for assessing the quality of GSH pharmaceuticals, providing both qualitative and quantitative information on GSH and its related impurities A-D.


Assuntos
Glutationa , Imageamento por Ressonância Magnética , Cromatografia Líquida de Alta Pressão/métodos , Espectroscopia de Ressonância Magnética/métodos , Preparações Farmacêuticas , Contaminação de Medicamentos , Reprodutibilidade dos Testes
2.
Anal Chem ; 96(2): 904-909, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38158374

RESUMO

Analyzing coeluting impurities with similar masses in synthetic oligonucleotides by liquid chromatography-mass spectrometry (LC-MS) poses challenges due to inadequate separation in either dimension. Herein, we present a direct method employing fully resolved isotopic envelopes, enabled by high resolution mass spectrometry (HRMS), to identify and quantify isobaric impurity ions resulting from the deletion or addition of a uracil (U) or cytosine (C) nucleotide from or to the full-length sequence. These impurities may each encompass multiple sequence variants arising from various deletion or addition sites. The method utilizes a full or targeted MS analysis to measure accurate isotopic distributions that are chemical formula dependent but nucleotide sequence independent. This characteristic enables the quantification of isobaric impurity ions involving sequence variants, a capability typically unavailable in sequence-dependent MS/MS methods. Notably, this approach does not rely on standard curves to determine isobaric impurity compositions in test samples; instead, it utilizes the individual isotopic distributions measured for each impurity standard. Moreover, in cases where specific impurity standards are unavailable, the measured isotopic distributions can be adequately replaced with the theoretical distributions (calculated based on chemical formulas of standards) adjusted using experiment-specific correction factors. In summary, this streamlined approach overcomes the limitations of LC-MS analysis for coeluting isobaric impurity ions, offering a promising solution for the in-depth profiling of complex impurity mixtures in synthetic oligonucleotide therapeutics.


Assuntos
Oligonucleotídeos , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Oligonucleotídeos/química , Espectrometria de Massa com Cromatografia Líquida , Peso Molecular , Contaminação de Medicamentos , Cromatografia Líquida de Alta Pressão/métodos
3.
Anal Chem ; 95(41): 15325-15332, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37796650

RESUMO

Two decades ago, postmarket discovery of a second crystal form of ritonavir with lower solubility had major implications for drug manufacturers and patients. Since then, ritonavir has been reformulated via the hot-melt-extrusion process in an amorphous form. Here, quantitative low- and mid-frequency Raman spectroscopy methods were developed to characterize polymorphs, form I and form II, in commercial ritonavir 100 mg oral tablets as an alternate analysis approach compared to X-ray powder diffraction (XRPD). Crystallization in three lots of ritonavir products obtained from four separate manufacturers was assessed after storage under accelerated conditions at 40 °C and 75% relative humidity (RH). Results were compared with quantitative XRPD methods developed and validated according to ICH Q2 (R1) guidelines. In a four-week open-dish study, form I crystallization occurred in two of the four products and form II crystallization was detected in another ritonavir product. The limits of detection for XRPD, low-frequency Raman (LFR), and mid-frequency Raman (MFR) were determined to be 0.7, 0.8, and 0.5% for form I and 0.6, 0.6, and 1% for form II, respectively. Root-mean-squared-error of predictions were 0.6-1.0 and 0.6-2.5% for LFR- and MFR-based partial least-squares models. Further, ritonavir polymorphs could also be identified and detected directly from ritonavir tablets using transmission LFR. In summary, LFR was applied for the assessment of polymorphism in real-world samples. While providing analytical performance similar to conventional techniques, LFR reduced the single measurement time from 66 min (XRPD) to 10 s (LFR) without the need for tedious sample preparation procedures.


Assuntos
Ritonavir , Análise Espectral Raman , Humanos , Ritonavir/química , Análise Espectral Raman/métodos , Difração de Raios X , Solubilidade , Cristalização , Pós
4.
J Pharm Sci ; 112(10): 2685-2695, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37524228

RESUMO

With the discovery of carcinogenic nitrosamine impurities in pharmaceuticals in 2018 and subsequent regulatory requirements for risk assessment for nitrosamine formation during pharmaceutical manufacturing processes, storage or from contaminated supply chains, effective testing of nitrosamines has become essential to ensure the quality of drug substances and products. Mass spectrometry has been widely applied to detect and quantify trace amounts of nitrosamines in pharmaceuticals. As part of an effort by regulatory authorities to assess the measurement variation in the determination of nitrosamines, an inter-laboratory study was performed by the laboratories from six regulatory agencies with each of the participants using their own analytical procedures to determine the amounts of nitrosamines in a set of identical samples. The results demonstrated that accurate and precise quantitation of trace level nitrosamines can be achieved across multiple analytical procedures and provided insight into the performance characteristics of mass spectrometry-based analytical procedures in terms of accuracy, repeatability and reproducibility.


Assuntos
Nitrosaminas , Humanos , Nitrosaminas/análise , Reprodutibilidade dos Testes , Espectrometria de Massas , Preparações Farmacêuticas
5.
Anal Chem ; 95(5): 2633-2638, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36693238

RESUMO

Nanomaterials have expanded the use of active pharmaceutical ingredients by improving efficacy, decreasing toxicity, and facilitating targeted delivery. To systematically achieve this goal, nanomaterial-containing drugs need to be manufactured with precision in attributes such as size, morphology, surface chemistry, and composition. Their physicochemical characterization is essential as their attributes govern pharmacokinetics yet can be challenging due to the nature of many nanomaterial-based formulations unless advanced sample fixation and in vitro characterization methods are utilized. Here, different cryogenic and other fixation strategies were assessed, and a novel physicochemical characterization method was developed using scanning electron Raman cryo-microscopy (SERCM). A complex nanoparticle albumin bound paclitaxel (nab-paclitaxel) formulation was chosen as a model drug. Plunge freezing (PF), high pressure freezing (HPF), freeze substitution (FS), and membrane filtration were compared for their influence on size and morphology measurements, and formulation-based variations were quantified. SERCM was introduced as a multiattribute physicochemical characterization platform, and the composition of nanoparticles was confirmed as albumin-paclitaxel complexes. By coupling image-based quantitative analysis with chemical analysis, SERCM has the potential to pave the way for the development of comprehensive tools for assessing injectable and ophthalmic nanomaterial-containing drugs in their native-like state.


Assuntos
Nanopartículas , Nanoestruturas , Elétrons , Paclitaxel/farmacocinética , Nanopartículas/química , Albuminas/química , Preparações Farmacêuticas
6.
J Pharm Biomed Anal ; 224: 115176, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36423497

RESUMO

Pharmaceutical dosage forms such as tablets and capsules are often coated with a functional polymer to modify the drug release. To obtain the drug release profiles, ensure quality control and predict in-vivo performance, dissolution studies are performed. However, dissolution tests are time-consuming, sample destructive and do not readily allow for at-line or in-line characterization. Rapid assessment of functional coatings is essential for products where a single capsule is comprised of hundreds of functionally-coated pellets and the collective drug release kinetics of the entire capsule depends on contributions from each pellet. Here, single Raman measurements were used to evaluate the coating thickness distributions of a dosage form comprised of small, functionally-coated pellets in capsules. First, the composition and physicochemical properties of pellets were characterized by multivariate analysis assisted Raman mapping of pellet cross-sections. Second, a method of collecting single Raman spectrum with spectral contributions from the coating and API layers was developed and optimized to estimate the thickness of coatings. The coating thicknesses obtained from single Raman measurements of pellets in each capsule revealed thickness distributions that correlated with the dissolution profiles (capsules with one distribution had single stage release and capsules with two distributions had a two-stage release). Finally, an unsupervised multivariate analysis method was demonstrated as a rapid and efficient way to correlate dissolution profiles of enterically coated pellets. In summary, this study presents a non-destructive and rapid characterization method for assessing coating thickness and has the potential to be applied in process analytical technologies to ensure coating uniformity and predict product dissolution rate performance.


Assuntos
Polímeros , Solubilidade , Implantes de Medicamento/química , Análise Espectral/métodos , Comprimidos/química , Polímeros/química , Preparações de Ação Retardada/química
7.
J Pharm Biomed Anal ; 222: 115073, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36206694

RESUMO

Pregnenolone (PREG) is an endogenous steroid frequently sold as an over-the-counter dietary supplement touted to promote neurological and immunological health. While the PREG dietary supplement is added to the diet for health benefits, there are no FDA approved PREG drugs. However, compounded PREG drug products are available to U.S. patients. The FDA works with state regulatory authorities on the oversight of compounding activities, including developing 503A and 503B lists of bulk substances that compounders are permitted to use. PREG is one of the substances publicly nominated to be included on the 503B list. Compounded hormone therapies such as those using PREG are of interest given the lack of standardization in compounded drug products which may increase the possibility of underdosing, overdosing, or contamination. However, no USP monograph currently exists to evaluate the quality of PREG drug substance or product. To address knowledge gaps and assist in quality control, a simple and rapid quantitative proton nuclear magnetic resonance spectroscopy (qNMR) method for the identification and assay of PREG in different types of PREG products was developed and validated. PREG samples were characterized using 1D 1H and 2D 1H-13C HSQC NMR spectra. The qNMR assay method (taking approximately 10 min per NMR spectrum) was validated for precision, accuracy, specificity, robustness and linearity per ICH Q2(R1) guidance. The method was validated in a range from 0.032 to 3.2 mg/mL. As a proof of concept, seven PREG bulk substance samples, three tablet and two capsule PREG dietary supplements were assessed by the qNMR analytical procedure. NMR data from all tested samples met the expected criteria for identification and assay. The results demonstrate the potential of qNMR for the quality assessment of different types of PREG samples.


Assuntos
Pregnenolona , Prótons , Humanos , Espectroscopia de Ressonância Magnética/métodos , Padrões de Referência , Espectroscopia de Prótons por Ressonância Magnética
8.
Viruses ; 14(7)2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35891547

RESUMO

From the beginning of the COVID-19 pandemic, researchers assessed the impact of the disease in terms of loss of life, medical load, economic damage, and other key metrics of resiliency and consequence mitigation; these studies sought to parametrize the critical components of a disease transmission model and the resulting analyses were informative but often lacked critical parameters or a discussion of parameter sensitivities. Using SARS-CoV-2 as a case study, we present a robust modeling framework that considers disease transmissibility from the source through transport and dispersion and infectivity. The framework is designed to work across a range of particle sizes and estimate the generation rate, environmental fate, deposited dose, and infection, allowing for end-to-end analysis that can be transitioned to individual and population health models. In this paper, we perform sensitivity analysis on the model framework to demonstrate how it can be used to advance and prioritize research efforts by highlighting critical parameters for further analyses.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias
9.
AAPS J ; 24(2): 40, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277760

RESUMO

In vitro dissolution testing is widely used to mimic and predict in vivo performance of oral drug products in the gastrointestinal (GI) tract. This literature review assesses the current in vitro dissolution methodologies being employed to simulate and predict in vivo drug dissolution under fasted and fed conditions, with emphasis on immediate release (IR) solid oral dosage forms. Notable human GI physiological conditions under fasted and fed states have been reviewed and summarized. Literature results showed that dissolution media, mechanical forces, and transit times are key dissolution test parameters for simulating specific postprandial conditions. A number of biorelevant systems, including the fed stomach model (FSM), GastroDuo device, dynamic gastric model (DGM), simulated gastrointestinal tract models (TIM), and the human gastric simulator (HGS), have been developed to mimic the postprandial state of the stomach. While these models have assisted in expanding physiological relevance of in vitro dissolution tests, in general, these models lack the ability to fully replicate physiological conditions/processes. Furthermore, the translatability of in vitro data to an in vivo system remains challenging. Additionally, physiologically based pharmacokinetic (PBPK) modeling has been employed to evaluate the effect of food on drug bioavailability and bioequivalence. Here, we assess the current status of in vitro dissolution methodologies and absorption PBPK modeling approaches to identify knowledge gaps and facilitate further development of in vitro dissolution methods that factor in fasted and fed states. Prediction of in vivo drug performance under fasted and fed conditions via in vitro dissolution testing and modeling may potentially help efforts in harmonizing global regulatory recommendations regarding in vivo fasted and fed bioequivalence studies for solid oral IR products.


Assuntos
Esvaziamento Gástrico , Período Pós-Prandial , Administração Oral , Disponibilidade Biológica , Esvaziamento Gástrico/fisiologia , Humanos , Modelos Biológicos , Solubilidade
10.
J Mass Spectrom ; 57(4): e4819, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35347805

RESUMO

Tandem mass spectrometry (MS/MS) can provide direct and accurate sequence characterization of synthetic oligonucleotide drugs, including modified oligonucleotides. Multiple factors can affect oligonucleotide MS/MS sequencing, including the intrinsic properties of oligonucleotides (i.e., nucleotide composition and structural modifications) and instrument parameters associated with the ion activation for fragmentation. In this study, MS/MS sequencing of a thymidine (T)-rich and phosphorothioate (PS)-modified DNA oligonucleotide was investigated using two fragmentation techniques: trap-type collision-induced dissociation ("CID") and beam-type CID also termed as higher-energy collisional dissociation ("HCD"), preceded by a hydrophilic interaction liquid chromatography (HILIC) separation. A low to moderate charge state (-4), which predominated under the optimized HILIC-MS conditions, was selected as the precursor ion for MS/MS analysis. Comparison of the two distinctive ion activation mechanisms on the same precursor demonstrated that HCD was superior to CID in promoting higher sequence coverage and analytical sensitivity in sequence elucidation of T-rich DNA oligonucleotides. Specifically, HCD provided more sequence-defining fragments with higher fragment intensities than CID. Furthermore, the direct comparison between unmodified and PS-modified DNA oligonucleotides demonstrated a loss of MS/MS fragmentation efficiency by PS modification in both CID and HCD approaches, and a resultant reduction in sequence coverage. The deficiency in PS DNA sequence coverage observed with single collision energy HCD, however, was partially recovered by applying HCD with multiple collision energies. Collectively, this work demonstrated that HCD is advantageous to MS/MS sequencing of T-rich PS-modified DNA oligonucleotides.

11.
Thorax ; 77(8): 812-820, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34697091

RESUMO

INTRODUCTION: Inhaled gene therapy of muco-obstructive lung diseases requires a strategy to achieve therapeutically relevant gene transfer to airway epithelium covered by particularly dehydrated and condensed mucus gel layer. Here, we introduce a synthetic DNA-loaded mucus-penetrating particle (DNA-MPP) capable of providing safe, widespread and robust transgene expression in in vivo and in vitro models of muco-obstructive lung diseases. METHODS: We investigated the ability of DNA-MPP to mediate reporter and/or therapeutic transgene expression in lung airways of a transgenic mouse model of muco-obstructive lung diseases (ie, Scnn1b-Tg) and in air-liquid interface cultures of primary human bronchial epithelial cells harvested from an individual with cystic fibrosis. A plasmid designed to silence epithelial sodium channel (ENaC) hyperactivity, which causes airway surface dehydration and mucus stasis, was intratracheally administered via DNA-MPP to evaluate therapeutic effects in vivo with or without pretreatment with hypertonic saline, a clinically used mucus-rehydrating agent. RESULTS: DNA-MPP exhibited marked greater reporter transgene expression compared with a mucus-impermeable formulation in in vivo and in vitro models of muco-obstructive lung diseases. DNA-MPP carrying ENaC-silencing plasmids provided efficient downregulation of ENaC and reduction of mucus burden in the lungs of Scnn1b-Tg mice, and synergistic impacts on both gene transfer efficacy and therapeutic effects were achieved when DNA-MPP was adjuvanted with hypertonic saline. DISCUSSION: DNA-MPP constitutes one of the rare gene delivery systems providing therapeutically meaningful gene transfer efficacy in highly relevant in vivo and in vitro models of muco-obstructive lung diseases due to its unique ability to efficiently penetrate airway mucus.


Assuntos
Pneumopatias Obstrutivas , Nanopartículas , Animais , DNA , Terapia Genética , Humanos , Pulmão/metabolismo , Pneumopatias Obstrutivas/terapia , Camundongos , Muco/metabolismo
12.
J Pharm Sci ; 111(6): 1652-1658, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34742730

RESUMO

The release and dissolution of an active pharmaceutical ingredient (API) from the solid oral formulation into the gastrointestinal (GI) tract is critical for the drug's absorption into systemic circulation. Extended-release (ER) solid oral dosage forms are normally subjected to physical shear and grinding forces as well as pressure exerted by peristaltic movements when passing through the GI tract. The complex physical contraction and sample friction exerted by the GI tract are not simulated well by compendial dissolution methods. These limitations render traditional in vitro dissolution testing unable to discriminate and predict a product's in vivo performance. The objective of this study was to develop a dissolution method that better simulates the GI environment that products are subject to when taken by patients. A newly designed Mechanical Apparatus under GI Conditions (MAGIC) was assembled with a dissolution platform and mechanical capabilities to allow in vitro dissolution testing under sample contractions and friction. The dissolution platform, with medium flow-through configuration, was manufactured by 3D printing. A 60 mg polymer matrix-based ER nifedipine product was tested. To simulate GI physiological conditions during the dissolution testing, the flow rate of the medium, and a combination of mechanical compression with rotation induced sample friction at various rotation frequencies were explored. The polymer matrix-based nifedipine ER formulation used here failed its controlled release functionality in the simulated GI environment under mechanical compression and sample friction. The results showed that the MAGIC system, with flow-through configuration under compression and sample friction, has advantages over compendial methods in testing ER solid oral formulations.


Assuntos
Nifedipino , Polímeros , Administração Oral , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Fricção , Humanos , Solubilidade , Comprimidos
13.
PLoS Pathog ; 17(8): e1009865, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34424943

RESUMO

While evidence exists supporting the potential for aerosol transmission of SARS-CoV-2, the infectious dose by inhalation remains unknown. In the present study, the probability of infection following inhalation of SARS-CoV-2 was dose-dependent in a nonhuman primate model of inhalational COVID-19. The median infectious dose, assessed by seroconversion, was 52 TCID50 (95% CI: 23-363 TCID50), and was significantly lower than the median dose for fever (256 TCID50, 95% CI: 102-603 TCID50), resulting in a group of animals that developed an immune response post-exposure but did not develop fever or other clinical signs of infection. In a subset of these animals, virus was detected in nasopharyngeal and/or oropharyngeal swabs, suggesting that infected animals without signs of disease are able to shed virus and may be infectious, which is consistent with reports of asymptomatic spread in human cases of COVID-19. These results suggest that differences in exposure dose may be a factor influencing disease presentation in humans, and reinforce the importance of public health measures that limit exposure dose, such as social distancing, masking, and increased ventilation. The dose-response data provided by this study are important to inform disease transmission and hazard modeling, and, ultimately, mitigation strategies. Additionally, these data will be useful to inform dose selection in future studies examining the efficacy of therapeutics and vaccines against inhalational COVID-19, and as a baseline in healthy, young adult animals for assessment of the importance of other factors, such as age, comorbidities, and viral variant, on the infectious dose and disease presentation.


Assuntos
COVID-19/transmissão , COVID-19/virologia , Macaca fascicularis , Soroconversão , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Febre/virologia , Exposição por Inalação , Masculino , Células Vero , Carga Viral
14.
JAMA Netw Open ; 4(6): e2118253, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34181009

RESUMO

Importance: A publication reported that N-nitrosodimethylamine (NDMA), a probable human carcinogen, was formed when ranitidine and nitrite were added to simulated gastric fluid. However, the nitrite concentrations used were greater than the range detected in acidic gastric fluid in prior clinical studies. Objective: To characterize NDMA formation following the addition of ranitidine to simulated gastric fluid using combinations of fluid volume, pH levels, and nitrite concentrations, including physiologic levels. Design, Setting, and Participants: One 150-mg ranitidine tablet was added to 50 or 250 mL of simulated gastric fluid with a range of nitrite concentrations from the upper range of physiologic (100 µmol/L) to higher concentrations (10 000 µmol/L) with a range of pH levels. NDMA amounts were assessed with a liquid chromatography-mass spectrometry method. Main Outcomes and Measures: NDMA detected in simulated gastric fluid 2 hours after adding ranitidine. Results: At a supraphysiologic nitrite concentration (ie, 10 000 µmol/L), the mean (SD) amount of NDMA detected in 50 mL simulated gastric fluid 2 hours after adding ranitidine increased from 222 (12) ng at pH 5 to 11 822 (434) ng at pH 1.2. Subsequent experiments with 50 mL of simulated gastric fluid at pH 1.2 with no added nitrite detected a mean (SD) of 22 (2) ng of NDMA, which is the background amount present in the ranitidine tablets. Similarly, at the upper range of physiologic nitrite (ie, 100 µmol/L) or at nitrite concentrations as much as 50-fold greater (1000 or 5000 µmol/L) only background mean (SD) amounts of NDMA were observed (21 [3] ng, 24 [2] ng, or 24 [3] ng, respectively). With 250 mL of simulated gastric fluid, no NDMA was detected at the upper physiologic range (100 µmol/L) or 10-fold physiologic (1000 µmol/L) nitrite concentrations, while NDMA was detected (mean [SD] level, 7353 [183] ng) at a 50-fold physiologic nitrite concentration (5000 µmol/L). Conclusions and Relevance: In this in vitro study of ranitidine tablets added to simulated gastric fluid with different nitrite concentrations, ranitidine conversion to NDMA was not detected until nitrite was 5000 µmol/L, which is 50-fold greater than the upper range of physiologic gastric nitrite concentrations at acidic pH. These findings suggest that ranitidine is not converted to NDMA in gastric fluid at physiologic conditions.


Assuntos
Dimetilnitrosamina/metabolismo , Absorção Gastrointestinal/fisiologia , Ranitidina/análise , Antagonistas dos Receptores H2 da Histamina/análise , Antagonistas dos Receptores H2 da Histamina/sangue , Humanos , Ranitidina/sangue
15.
Adv Ther (Weinh) ; 4(2)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33709020

RESUMO

We here introduce a new paradigm to promote pulmonary DNA vaccination. Specifically, we demonstrate that nanoparticles designed to rapidly penetrate airway mucus (mucus-penetrating particle or MPP) enhance the delivery of inhaled model DNA vaccine (i.e. ovalbumin-expressing plasmids) to pulmonary dendritic cells (DC), leading to robust and durable local and trans-mucosal immunity. In contrast, mucus-impermeable particles were poorly taken up by pulmonary DC following inhalation, despite their superior ability to mediate DC uptake in vitro compared to MPP. In addition to the enhanced immunity achieved in mucosal surfaces, inhaled MPP unexpectedly provided significantly greater systemic immune responses compared to gold-standard approaches applied in the clinic for systemic vaccination, including intradermal injection and intramuscular electroporation. We also showed here that inhaled MPP significantly enhanced the survival of an orthotopic mouse model of aggressive lung cancer compared to the gold-standard approaches. Importantly, we discovered that MPP-mediated pulmonary DNA vaccination induced memory T-cell immunity, particularly the ready-to-act effector memory-biased phenotype, both locally and systemically. The findings here underscore the importance of breaching the airway mucus barrier to facilitate DNA vaccine uptake by pulmonary DC and thus to initiate full-blown immune responses.

16.
Mol Pharm ; 18(4): 1544-1557, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33621099

RESUMO

Complex iron nanoparticle-based drugs are one of the oldest and most frequently administered classes of nanomedicines. In the US, there are seven FDA-approved iron nanoparticle reference drug products, of which one also has an approved generic drug product (i.e., sodium ferric gluconate (SFG)). These products are indicated for the treatment of iron deficiency anemia and are administered intravenously. On the molecular level, iron nanomedicines are colloids composed of an iron oxide core with a carbohydrate coating. This formulation makes nanomedicines more complex than conventional small molecule drugs. As such, these products are often referred to as nonbiological complex drugs (e.g., by the nonbiological complex drugs (NBCD) working group) or complex drug products (e.g., by the FDA). Herein, we report a comprehensive study of the physiochemical properties of the iron nanoparticle product SFG. SFG is the single drug for which both an innovator (Ferrlecit) and generic product are available in the US, allowing for comparative studies to be performed. Measurements focused on the iron core of SFG included optical spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), X-ray powder diffraction (XRPD), 57Fe Mössbauer spectroscopy, and X-ray absorbance spectroscopy (XAS). The analysis revealed similar ferric-iron-oxide structures. Measurements focused on the carbohydrate shell comprised of the gluconate ligands included forced acid degradation, dynamic light scattering (DLS), analytical ultracentrifugation (AUC), and gel permeation chromatography (GPC). Such analysis revealed differences in composition for the innovator versus the generic SFG. These studies have the potential to contribute to future quality assessment of iron complex products and will inform on a pharmacokinetic study of two therapeutically equivalent iron gluconate products.


Assuntos
Medicamentos Genéricos/química , Compostos Férricos/química , Nanopartículas/química , Anemia Ferropriva/tratamento farmacológico , Química Farmacêutica , Cromatografia em Gel , Medicamentos Genéricos/administração & dosagem , Medicamentos Genéricos/farmacocinética , Medicamentos Genéricos/normas , Difusão Dinâmica da Luz , Estudos de Equivalência como Asunto , Compostos Férricos/administração & dosagem , Compostos Férricos/farmacocinética , Compostos Férricos/normas , Humanos , Nanopartículas/administração & dosagem , Nanopartículas/normas , Controle de Qualidade , Ultracentrifugação
17.
Commun Chem ; 4(1): 126, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36697655

RESUMO

The COVID-19 pandemic created an increased demand for hygiene supplies such as hand sanitizers. In response, a large number of new domestic or imported hand sanitizer products entered the US market. Some of these products were later found to be out of specification. Here, to quickly assess the quality of the hand sanitizer products, a quantitative, through-container screening method was developed for rapid and non-destructive screening. Using spatially offset Raman spectroscopy (SORS) and support vector regression (SVR), active ingredients (e.g., type of alcohol) of 173 commercial and in-house products were identified and quantified regardless of the container material or opacity. Alcohol content in hand sanitizer formulations were predicted with high accuracy [Formula: see text] using SVR and [Formula: see text] of the substandard test samples were identified. In sum, a SORS-SVR method was developed and used for testing medical countermeasures used against COVID-19, demonstrating a potential for high-volume testing during public health threats.

18.
Sensors (Basel) ; 20(23)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297345

RESUMO

Quality checks, assessments, and the assurance of food products, raw materials, and food ingredients is critically important to ensure the safeguard of foods of high quality for safety and public health. Nevertheless, quality checks, assessments, and the assurance of food products along distribution and supply chains is impacted by various challenges. For instance, the development of portable, sensitive, low-cost, and robust instrumentation that is capable of real-time, accurate, and sensitive analysis, quality checks, assessments, and the assurance of food products in the field and/or in the production line in a food manufacturing industry is a major technological and analytical challenge. Other significant challenges include analytical method development, method validation strategies, and the non-availability of reference materials and/or standards for emerging food contaminants. The simplicity, portability, non-invasive, non-destructive properties, and low-cost of NIR spectrometers, make them appealing and desirable instruments of choice for rapid quality checks, assessments and assurances of food products, raw materials, and ingredients. This review article surveys literature and examines current challenges and breakthroughs in quality checks and the assessment of a variety of food products, raw materials, and ingredients. Specifically, recent technological innovations and notable advances in quartz crystal microbalances (QCM), electroanalytical techniques, and near infrared (NIR) spectroscopic instrument development in the quality assessment of selected food products, and the analysis of food raw materials and ingredients for foodborne pathogen detection between January 2019 and July 2020 are highlighted. In addition, chemometric approaches and multivariate analyses of spectral data for NIR instrumental calibration and sample analyses for quality assessments and assurances of selected food products and electrochemical methods for foodborne pathogen detection are discussed. Moreover, this review provides insight into the future trajectory of innovative technological developments in QCM, electroanalytical techniques, NIR spectroscopy, and multivariate analyses relating to general applications for the quality assessment of food products.


Assuntos
Técnicas de Microbalança de Cristal de Quartzo , Espectroscopia de Luz Próxima ao Infravermelho , Calibragem , Indústria de Processamento de Alimentos , Análise Multivariada
19.
J Am Osteopath Assoc ; 120(12): 844-854, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33165568

RESUMO

CONTEXT: There is strong evidence that social support-particularly perceived social support-functions as a protective factor for health. Few studies have investigated how medical students perceive the types of social support they experience. OBJECTIVE: To determine how osteopathic medical students perceive social support, understand the factors that influence their perceptions, and explore how group participation in a cocurricular, academic program could affect student perceptions. METHODS: In this cross-sectional study of 983 medical students at a multicampus osteopathic medical school in the Midwest, potential respondents were invited by email in March 2018 to participate in a self-reported evaluation of their perceived social support using a 40-question Interpersonal Support Evaluation List (ISEL). The demographic variables included gender, race, age, current phase in medical school, Hispanic heritage, campus assignment, and hometown population type. A total score for each type of social support and a summative score for overall perceived social support were calculated. Descriptive statistics were applied to provide a summary of the distribution of study variables. Bivariate analyses were conducted using student t test and analysis of variance (ANOVA) statistic to determine distribution of 4 social support constructs and overall social support by all the study variables; α < .05 was considered statistically significant. Linear regression analysis was performed to determine the association between all study variables and 4 social support constructs. Pairwise interactions were calculated to determine whether the association differed by any of the study variables. RESULTS: Self-esteem support was the lowest type of perceived social support overall in the total sample (mean [SD], 23.5[2.0]). Hispanic students reported lower overall mean perceived social support than those who did not identify as Hispanic (100 vs 104; P=.04). Older study participants had higher mean tangible support compared with their younger counterparts (26.25 vs. 25.60, P=.018; t [264]=1.18). Older study participants also had higher mean appraisal support compared with their younger counterparts (26.57 vs. 25.92, P=.06; t [266]=1.27). Female medical students reported lower levels of belonging support overall (mean [SD] 26.79, [2.10]). Students from rural hometowns reported a higher sense of belonging support than any other group. Female students from suburban and urban hometowns reported lower levels of belonging support compared with women from rural hometowns (Adj. ß=-0.96, P=.01). Students who participated in the rural and urban underserved program had higher self esteem support compared with those who did not participate in the rural and urban underserved program (Adj. ß=-1.30, P=.05). Students in the clinical phase of medical education reported lower levels of belonging support than students in the preclinical phase (26.14 vs. 26.69, P=.05; t[256]=1.07). CONCLUSIONS: It is critical to understand the ways medical students experience social support and the factors that contribute to it. Longitudinal studies following medical students over time would contribute to a more complete understanding of social support in medical students as they move from preclinical to the clinical phases of medical school.


Assuntos
Medicina Osteopática , Estudantes de Medicina , Estudos Transversais , Feminino , Humanos , Medicina Osteopática/educação , Percepção , Faculdades de Medicina , Apoio Social
20.
Am J Cardiol ; 135: 99-104, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32866447

RESUMO

Left atrial appendage occlusion is utilized as a second line therapy to long-term oral anticoagulation in appropriately selected patients with atrial fibrillation (AF). We examined the feasibility of cryoballoon (CB) pulmonary vein isolation (PVI) subsequent to Watchman device implantation. The study prospectively identified patients with Watchman devices (>90 days old) who underwent CB-PVI ablation between 2018 and 2019. Twelve consecutive patients (male 50%; mean age 71 ± 9 years; CHA2DS2-VASc score 3.4 ± 1.1) underwent CB-PVI procedures after Watchman device implantation (mean 182 ± 82 days). Acute PVI was achieved in 100% of patients. All patients had evidence of complete (n = 9) or partial (n = 3) endothelialization of the surface of the Watchman device with conductive tissue properties demonstrated during electrophysiologic testing. There were no major procedure-related complications including death, stroke, pericardial effusion, device dislodgment, device thrombus, or new or increasing peri-device leak. Mean peri-device leak size (45-day postimplant: 0.06 ± 0.09 mm vs Post-PVI: 0.04 ± 0.06 mm; p = 0.61) remained unchanged. Two patients had recurrence of AF after the 90-day blanking period (13.2 ± 6.6 months). One patient underwent a redo ablation procedure for recurrent AF. This pilot study suggests the potential feasibility of CB-PVI ablation in patients with chronic Watchman left atrial appendage occlusion devices. Larger prospective studies are needed to confirm the clinical efficacy and safety of this approach.


Assuntos
Apêndice Atrial/fisiopatologia , Fibrilação Atrial/cirurgia , Ablação por Cateter/métodos , Criocirurgia , Veias Pulmonares/cirurgia , Dispositivo para Oclusão Septal , Idoso , Idoso de 80 Anos ou mais , Criocirurgia/instrumentação , Fenômenos Eletrofisiológicos , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...