Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Biophys J ; 122(24): 4730-4747, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-37978804

RESUMO

Vascular endothelial cells (ECs) form a semipermeable barrier separating vascular contents from the interstitium, thereby regulating the movement of water and molecular solutes across small intercellular gaps, which are continuously forming and closing. Under inflammatory conditions, however, larger EC gaps form resulting in increased vascular leakiness to circulating fluid, proteins, and cells, which results in organ edema and dysfunction responsible for key pathophysiologic findings in numerous inflammatory disorders. In this study, we extend our earlier work examining the biophysical properties of EC gap formation and now address the role of lamellipodia, thin sheet-like membrane projections from the leading edge, in modulating EC spatial-specific contractile properties and gap closure. Micropillars, fabricated by soft lithography, were utilized to form reproducible paracellular gaps in human lung ECs. Using time-lapse imaging via optical microscopy, rates of EC gap closure and motility were measured with and without EC stimulation with the barrier-enhancing sphingolipid, sphingosine-1-phosphate. Peripheral ruffle formation was ubiquitous during gap closure. Kymographs were generated to quantitatively compare the lamellipodia dynamics of sphingosine-1-phosphate-stimulated and -unstimulated ECs. Utilizing atomic force microscopy, we characterized the viscoelastic behavior of EC lamellipodia. Our results indicate decreased stiffness and increased liquid-like behavior of expanding lamellipodia compared with regions away from the cellular edge (lamella and cell body) during EC gap closure, results in sync with the rapid kinetics of protrusion/retraction motion. We hypothesize this dissipative EC behavior during gap closure is linked to actomyosin cytoskeletal rearrangement and decreased cross-linking during lamellipodia expansion. In summary, these studies of the kinetic and mechanical properties of EC lamellipodia and ruffles at gap boundaries yield insights into the mechanisms of vascular barrier restoration and potentially a model system for examining the druggability of lamellipodial protein targets to enhance vascular barrier integrity.


Assuntos
Células Endoteliais , Pseudópodes , Humanos , Pseudópodes/metabolismo , Lisofosfolipídeos/metabolismo , Citoesqueleto/metabolismo , Endotélio Vascular/metabolismo , Células Cultivadas
2.
Front Physiol ; 14: 1129413, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415908

RESUMO

Introduction: Intra-amniotic inflammation (IAI) or chorioamnionitis is a common complication of pregnancy producing significant maternal morbidity/mortality, premature birth and neonatal risk of chronic lung diseases such as bronchopulmonary dysplasia (BPD). We examined eNAMPT (extracellular nicotinamide phosphoribosyltransferase), a critical inflammatory DAMP and TLR4 ligand, as a potential therapeutic target to reduce IAI severity and improve adverse fetal/neonatal outcomes. Methods: Blood/tissue samples were examined in: 1) women with histologically-proven chorioamnionitis, 2) very low birth weight (VLBW) neonates, and 3) a preclinical murine pregnancy model of IAI. Groups of pregnant IAI-exposed mice and pups were treated with an eNAMPT-neutralizing mAb. Results: Human placentas from women with histologically-proven chorioamnionitis exhibited dramatic NAMPT expression compared to placentas without chorioamnionitis. Increased NAMPT expression in whole blood from VLBW neonates (day 5) significantly predicted BPD development. Compared to untreated LPS-challenged murine dams (gestational day 15), pups born to eNAMPT mAb-treated dams (gestational days 15/16) exhibited a > 3-fold improved survival, reduced neonate lung eNAMPT/cytokine levels, and reduced development and severity of BPD and pulmonary hypertension (PH) following postnatal exposure to 100% hyperoxia days 1-14. Genome-wide gene expression studies of maternal uterine and neonatal cardiac tissues corroborated eNAMPT mAb-induced reductions in inflammatory pathway genes. Discussion: The eNAMPT/TLR4 inflammatory pathway is a highly druggable contributor to IAI pathobiology during pregnancy with the eNAMPT-neutralizing mAb a novel therapeutic strategy to decrease premature delivery and improve short- and long-term neonatal outcomes. eNAMPT blood expression is a potential biomarker for early prediction of chronic lung disease among premature neonates.

3.
Am J Physiol Lung Cell Mol Physiol ; 322(5): L737-L760, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35318857

RESUMO

Concentric pulmonary vascular wall thickening due partially to increased pulmonary artery (PA) smooth muscle cell (PASMC) proliferation contributes to elevating pulmonary vascular resistance (PVR) in patients with pulmonary hypertension (PH). Although pulmonary vasoconstriction may be an early contributor to increasing PVR, the transition of contractile PASMCs to proliferative PASMCs may play an important role in the development and progression of pulmonary vascular remodeling in PH. A rise in cytosolic Ca2+ concentration ([Ca2+]cyt) is a trigger for PASMC contraction and proliferation. Here, we report that upregulation of Piezo1, a mechanosensitive cation channel, is involved in the contractile-to-proliferative phenotypic transition of PASMCs and potential development of pulmonary vascular remodeling. By comparing freshly isolated PA (contractile PASMCs) and primary cultured PASMCs (from the same rat) in a growth medium (proliferative PASMCs), we found that Piezo1, Notch2/3, and CaSR protein levels were significantly higher in proliferative PASMCs than in contractile PASMCs. Upregulated Piezo1 was associated with an increase in expression of PCNA, a marker for cell proliferation, whereas downregulation (with siRNA) or inhibition (with GsMTx4) of Piezo1 attenuated PASMC proliferation. Furthermore, Piezo1 in the remodeled PA from rats with experimental PH was upregulated compared with PA from control rats. These data indicate that PASMC contractile-to-proliferative phenotypic transition is associated with the transition or adaptation of membrane channels and receptors. Upregulated Piezo1 may play a critical role in PASMC phenotypic transition and PASMC proliferation. Upregulation of Piezo1 in proliferative PASMCs may likely be required to provide sufficient Ca2+ to assure nuclear/cell division and PASMC proliferation, contributing to the development and progression of pulmonary vascular remodeling in PH.


Assuntos
Hipertensão Pulmonar , Proteínas de Membrana/metabolismo , Artéria Pulmonar , Animais , Sinalização do Cálcio/fisiologia , Proliferação de Células , Células Cultivadas , Humanos , Hipertensão Pulmonar/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , Ratos , Remodelação Vascular
4.
Am J Physiol Cell Physiol ; 321(6): C1010-C1027, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34669509

RESUMO

Piezo is a mechanosensitive cation channel responsible for stretch-mediated Ca2+ and Na+ influx in multiple types of cells. Little is known about the functional role of Piezo1 in the lung vasculature and its potential pathogenic role in pulmonary arterial hypertension (PAH). Pulmonary arterial endothelial cells (PAECs) are constantly under mechanic stretch and shear stress that are sufficient to activate Piezo channels. Here, we report that Piezo1 is significantly upregulated in PAECs from patients with idiopathic PAH and animals with experimental pulmonary hypertension (PH) compared with normal controls. Membrane stretch by decreasing extracellular osmotic pressure or by cyclic stretch (18% CS) increases Ca2+-dependent phosphorylation (p) of AKT and ERK, and subsequently upregulates expression of Notch ligands, Jagged1/2 (Jag-1 and Jag-2), and Delta like-4 (DLL4) in PAECs. siRNA-mediated downregulation of Piezo1 significantly inhibited the stretch-mediated pAKT increase and Jag-1 upregulation, whereas downregulation of AKT by siRNA markedly attenuated the stretch-mediated Jag-1 upregulation in human PAECs. Furthermore, the mRNA and protein expression level of Piezo1 in the isolated pulmonary artery, which mainly contains pulmonary arterial smooth muscle cells (PASMCs), from animals with severe PH was also significantly higher than that from control animals. Intraperitoneal injection of a Piezo1 channel blocker, GsMTx4, ameliorated experimental PH in mice. Taken together, our study suggests that membrane stretch-mediated Ca2+ influx through Piezo1 is an important trigger for pAKT-mediated upregulation of Jag-1 in PAECs. Upregulation of the mechanosensitive channel Piezo1 and the resultant increase in the Notch ligands (Jag-1/2 and DLL4) in PAECs may play a critical pathogenic role in the development of pulmonary vascular remodeling in PAH and PH.


Assuntos
Células Endoteliais/metabolismo , Hipertensão Pulmonar/metabolismo , Canais Iônicos/biossíntese , Mecanotransdução Celular/fisiologia , Artéria Pulmonar/metabolismo , Regulação para Cima/fisiologia , Adulto , Idoso , Animais , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Feminino , Humanos , Hipertensão Pulmonar/patologia , Indóis/farmacologia , Masculino , Mecanotransdução Celular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Pirróis/farmacologia , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
5.
Pulm Circ ; 11(4): 20458940211041512, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34531976

RESUMO

Pulmonary arterial hypertension is a progressive and fatal disease and rodents with experimental pulmonary hypertension (PH) are often used to study pathogenic mechanisms, identify therapeutic targets, and develop novel drugs for treatment. Here we describe a hands-on set of experimental approaches including ex vivo lung angiography and histology and in vivo right heart catheterization (RHC) to phenotypically characterize pulmonary hemodynamics and lung vascular structure in normal mice and mice with experimental PH. We utilized Microfil polymer as contrast in our ex vivo lung angiogram to quantitatively examine pulmonary vascular remodeling in mice with experimental PH, and lung histology to estimate pulmonary artery wall thickness. The peripheral lung vascular images were selected to determine the total length of lung vascular branches, the number of branches and the number of junctions in a given area (mm-2). We found that the three parameters determined by angiogram were not significantly different among the apical, middle, and basal regions of the mouse lung from normal mice, and were not influenced by gender (no significant difference between female and male mice). We conducted RHC in mice to measure right ventricular systolic pressure, a surrogate measure for pulmonary artery systolic pressure and right ventricle (RV) contractility (RV ± dP/dtmax) to estimate RV function. RHC, a short time (4-6 min) procedure, did not alter the lung angiography measurements. In summary, utilizing ex vivo angiogram to determine peripheral vascular structure and density in the mouse lung and utilizing in vivo RHC to measure pulmonary hemodynamics are reliable readouts to phenotype normal mice and mice with experimental PH. Lung angiogram and RHC are also reliable approaches to examine pharmacological effects of new drugs on pulmonary vascular remodeling and hemodynamics.

6.
Front Physiol ; 12: 714785, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408668

RESUMO

Excessive pulmonary artery (PA) smooth muscle cell (PASMC) proliferation and migration are implicated in the development of pathogenic pulmonary vascular remodeling characterized by concentric arterial wall thickening and arteriole muscularization in patients with pulmonary arterial hypertension (PAH). Pulmonary artery smooth muscle cell contractile-to-proliferative phenotypical transition is a process that promotes pulmonary vascular remodeling. A rise in cytosolic Ca2+ concentration [(Ca2+) cyt ] in PASMCs is a trigger for pulmonary vasoconstriction and a stimulus for pulmonary vascular remodeling. Here, we report that the calcium homeostasis modulator (CALHM), a Ca2+ (and ATP) channel that is allosterically regulated by voltage and extracellular Ca2+, is upregulated during the PASMC contractile-to-proliferative phenotypical transition. Protein expression of CALHM1/2 in primary cultured PASMCs in media containing serum and growth factors (proliferative PASMC) was significantly greater than in freshly isolated PA (contractile PASMC) from the same rat. Upregulated CALHM1/2 in proliferative PASMCs were associated with an increased ratio of pAKT/AKT and pmTOR/mTOR and an increased expression of the cell proliferation marker PCNA, whereas serum starvation and rapamycin significantly downregulated CALHM1/2. Furthermore, CALHM1/2 were upregulated in freshly isolated PA from rats with monocrotaline (MCT)-induced PH and in primary cultured PASMC from patients with PAH in comparison to normal controls. Intraperitoneal injection of CGP 37157 (0.6 mg/kg, q8H), a non-selective blocker of CALHM channels, partially reversed established experimental PH. These data suggest that CALHM upregulation is involved in PASMC contractile-to-proliferative phenotypical transition. Ca2+ influx through upregulated CALHM1/2 may play an important role in the transition of sustained vasoconstriction to excessive vascular remodeling in PAH or precapillary PH. Calcium homeostasis modulator could potentially be a target to develop novel therapies for PAH.

7.
Br J Pharmacol ; 178(17): 3373-3394, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33694155

RESUMO

BACKGROUND AND PURPOSE: Halofuginone is a febrifugine derivative originally isolated from Chinese traditional herb Chang Shan that exhibits anti-hypertrophic, anti-fibrotic and anti-proliferative effects. We sought to investigate whether halofuginone induced pulmonary vasodilation and attenuates chronic hypoxia-induced pulmonary hypertension (HPH). EXPERIMENTAL APPROACH: Patch-clamp experiments were conducted to examine the activity of voltage-dependent Ca2+ channels (VDCCs) in pulmonary artery smooth muscle cells (PASMCs). Digital fluorescence microscopy was used to measure intracellular Ca2+ concentration in PASMCs. Isolated perfused and ventilated mouse lungs were used to measure pulmonary artery pressure (PAP). Mice exposed to hypoxia (10% O2 ) for 4 weeks were used as model of HPH for in vivo experiments. KEY RESULTS: Halofuginone increased voltage-gated K+ (Kv ) currents in PASMCs and K+ currents through KCNA5 channels in HEK cells transfected with KCNA5 gene. HF (0.03-1 µM) inhibited receptor-operated Ca2+ entry in HEK cells transfected with calcium-sensing receptor gene and attenuated store-operated Ca2+ entry in PASMCs. Acute (3-5 min) intrapulmonary application of halofuginone significantly and reversibly inhibited alveolar hypoxia-induced pulmonary vasoconstriction dose-dependently (0.1-10 µM). Intraperitoneal administration of halofuginone (0.3 mg·kg-1 , for 2 weeks) partly reversed established PH in mice. CONCLUSION AND IMPLICATIONS: Halofuginone is a potent pulmonary vasodilator by activating Kv channels and blocking VDCC and receptor-operated and store-operated Ca2+ channels in PASMCs. The therapeutic effect of halofuginone on experimental PH is probably due to combination of its vasodilator effects, via inhibition of excitation-contraction coupling and anti-proliferative effects, via inhibition of the PI3K/Akt/mTOR signalling pathway.


Assuntos
Hipertensão Pulmonar , Preparações Farmacêuticas , Animais , Cálcio , Hipertensão Pulmonar/tratamento farmacológico , Hipóxia/tratamento farmacológico , Camundongos , Miócitos de Músculo Liso , Fosfatidilinositol 3-Quinases , Piperidinas , Artéria Pulmonar , Quinazolinonas
8.
Br J Pharmacol ; 178(1): 121-131, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32464698

RESUMO

An increase in pulmonary artery pressure is a common observation in adult mammals exposed to global alveolar hypoxia. It is considered a maladaptive response that places an increased workload on the right ventricle. The mechanisms initiating and maintaining the elevated pressure are of considerable interest in understanding pulmonary vascular homeostasis. There is an expectation that identifying the key molecules in the integrated vascular response to hypoxia will inform potential drug targets. One strategy is to take advantage of experiments of nature, specifically, to understand the genetic basis for the inter-individual variation in the pulmonary vascular response to acute and chronic hypoxia. To date, detailed phenotyping of highlanders has focused on haematocrit and oxygen saturation rather than cardiovascular phenotypes. This review explores what we can learn from those studies with respect to the pulmonary circulation. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.


Assuntos
Hipertensão Pulmonar , Animais , Homeostase , Hipóxia
9.
Pulm Circ ; 10(4): 2045894020956592, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33282184

RESUMO

Hypoxic Pulmonary Vasoconstriction (HPV) is an important physiological mechanism of the lungs that matches perfusion to ventilation thus maximizing O2 saturation of the venous blood within the lungs. This study emphasizes on principal pathways in the initiation and modulation of hypoxic pulmonary vasoconstriction with a primary focus on the role of Ca2+ signaling and Ca2+ influx pathways in hypoxic pulmonary vasoconstriction. We used an ex vivo model, isolated perfused/ventilated mouse lung to evaluate hypoxic pulmonary vasoconstriction. Alveolar hypoxia (utilizing a mini ventilator) rapidly and reversibly increased pulmonary arterial pressure due to hypoxic pulmonary vasoconstriction in the isolated perfused/ventilated lung. By applying specific inhibitors for different membrane receptors and ion channels through intrapulmonary perfusion solution in isolated lung, we were able to define the targeted receptors and channels that regulate hypoxic pulmonary vasoconstriction. We show that extracellular Ca2+ or Ca2+ influx through various Ca2+-permeable channels in the plasma membrane is required for hypoxic pulmonary vasoconstriction. Removal of extracellular Ca2+ abolished hypoxic pulmonary vasoconstriction, while blockade of L-type voltage-dependent Ca2+ channels (with nifedipine), non-selective cation channels (with 30 µM SKF-96365), and TRPC6/TRPV1 channels (with 1 µM SAR-7334 and 30 µM capsazepine, respectively) significantly and reversibly inhibited hypoxic pulmonary vasoconstriction. Furthermore, blockers of Ca2+-sensing receptors (by 30 µM NPS2143, an allosteric Ca2+-sensing receptors inhibitor) and Notch (by 30 µM DAPT, a γ-secretase inhibitor) also attenuated hypoxic pulmonary vasoconstriction. These data indicate that Ca2+ influx in pulmonary arterial smooth muscle cells through voltage-dependent, receptor-operated, and store-operated Ca2+ entry pathways all contribute to initiation of hypoxic pulmonary vasoconstriction. The extracellular Ca2+-mediated activation of Ca2+-sensing receptors and the cell-cell interaction via Notch ligands and receptors contribute to the regulation of hypoxic pulmonary vasoconstriction.

10.
Pulm Circ ; 10(3): 2045894020948470, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33294172

RESUMO

Platelet-derived growth factor is one of the major growth factors found in human and mammalian serum and tissues. Abnormal activation of platelet-derived growth factor signaling pathway through platelet-derived growth factor receptors may contribute to the development and progression of pulmonary vascular remodeling and obliterative vascular lesions in patients with pulmonary arterial hypertension. In this study, we examined the expression of platelet-derived growth factor receptor isoforms in pulmonary arterial smooth muscle and pulmonary arterial endothelial cells and investigated whether platelet-derived growth factor secreted from pulmonary arterial smooth muscle cell or pulmonary arterial endothelial cell promotes pulmonary arterial smooth muscle cell proliferation. Our results showed that the protein expression of platelet-derived growth factor receptor α and platelet-derived growth factor receptor ß in pulmonary arterial smooth muscle cell was upregulated in patients with idiopathic pulmonary arterial hypertension compared to normal subjects. Platelet-derived growth factor activated platelet-derived growth factor receptor α and platelet-derived growth factor receptor ß in pulmonary arterial smooth muscle cell, as determined by phosphorylation of platelet-derived growth factor receptor α and platelet-derived growth factor receptor ß. The platelet-derived growth factor-mediated activation of platelet-derived growth factor receptor α/platelet-derived growth factor receptor ß was enhanced in idiopathic pulmonary arterial hypertension-pulmonary arterial smooth muscle cell compared to normal cells. Expression level of platelet-derived growth factor-AA and platelet-derived growth factor-BB was greater in the conditioned media collected from idiopathic pulmonary arterial hypertension-pulmonary arterial endothelial cell than from normal pulmonary arterial endothelial cell. Furthermore, incubation of idiopathic pulmonary arterial hypertension-pulmonary arterial smooth muscle cell with conditioned culture media from normal pulmonary arterial endothelial cell induced more platelet-derived growth factor receptor α activation than in normal pulmonary arterial smooth muscle cell. Accordingly, the conditioned media from idiopathic pulmonary arterial hypertension-pulmonary arterial endothelial cell resulted in more pulmonary arterial smooth muscle cell proliferation than the media from normal pulmonary arterial endothelial cell. These data indicate that (a) the expression and activity of platelet-derived growth factor receptor are increased in idiopathic pulmonary arterial hypertension-pulmonary arterial smooth muscle cell compared to normal pulmonary arterial smooth muscle cell, and (b) pulmonary arterial endothelial cell from idiopathic pulmonary arterial hypertension patients secretes higher level of platelet-derived growth factor than pulmonary arterial endothelial cell from normal subjects. The enhanced secretion (and production) of platelet-derived growth factor from idiopathic pulmonary arterial hypertension-pulmonary arterial endothelial cell and upregulated platelet-derived growth factor receptor expression (and function) in idiopathic pulmonary arterial hypertension-pulmonary arterial smooth muscle cell may contribute to enhancing platelet-derived growth factor/platelet-derived growth factor receptor-associated pulmonary vascular remodeling in pulmonary arterial hypertension.

11.
Am J Physiol Cell Physiol ; 318(5): C954-C968, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32186932

RESUMO

The increase in cytosolic Ca2+ concentration ([Ca2+]cyt) and upregulation of calcium-sensing receptor (CaSR) and stromal interaction molecule 2 (STIM2) along with inhibition of voltage-gated K+ (KV) channels in pulmonary arterial smooth muscle cells (PASMC) have been implicated in the development of pulmonary arterial hypertension; however, the precise upstream mechanisms remain elusive. Activation of CaSR, a G protein-coupled receptor (GPCR), results in Ca2+ release from the endoplasmic/sarcoplasmic reticulum (ER/SR) and Ca2+ influx through receptor-operated and store-operated Ca2+ channels (SOC). Upon Ca2+ depletion from the SR, STIM forms clusters to mediate store-operated Ca2+ entry. Activity of KV channels, like KCNA5/KV1.5 and KCNA2/KV1.2, contributes to regulating membrane potential, and inhibition of KV channels results in membrane depolarization that increases [Ca2+]cyt by opening voltage-dependent Ca2+ channels. In this study, we show that activation of Notch by its ligand Jag-1 promotes the clustering of STIM2, and clustered STIM2 subsequently enhances the CaSR-induced Ca2+ influx through SOC channels. Extracellular Ca2+-mediated activation of CaSR increases [Ca2+]cyt in CASR-transfected HEK293 cells. Treatment of CASR-transfected cells with Jag-1 further enhances CaSR-mediated increase in [Ca2+]cyt. Moreover, CaSR-mediated increase in [Ca2+]cyt was significantly augmented in cells co-transfected with CASR and STIM2. CaSR activation results in STIM2 clustering in CASR/STIM2-cotransfected cells. Notch activation also induces significant clustering of STIM2. Furthermore, activation of Notch attenuates whole cell K+ currents in KCNA5- and KCNA2-transfected cells. Together, these results suggest that Notch activation enhances CaSR-mediated increases in [Ca2+]cyt by enhancing store-operated Ca2+ entry and inhibits KCNA5/KV1.5 and KCNA2/KV1.2, ultimately leading to voltage-activated Ca2+ entry.


Assuntos
Canal de Potássio Kv1.2/genética , Canal de Potássio Kv1.5/genética , Hipertensão Arterial Pulmonar/genética , Receptores de Detecção de Cálcio/genética , Molécula 2 de Interação Estromal/genética , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/genética , Sinalização do Cálcio/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Estrenos/farmacologia , Células HEK293 , Humanos , Indóis/farmacologia , Proteína Jagged-1/genética , Potenciais da Membrana/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Pirrolidinonas/farmacologia , Receptores de Detecção de Cálcio/efeitos dos fármacos , Receptores Notch/genética , Análise de Célula Única
12.
Emerg Microbes Infect ; 7(1): 147, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30131494

RESUMO

The highly pathogenic avian influenza (HPAI) A(H5N1) virus is endemic in Indonesian poultry and has caused sporadic human infection in Indonesia since 2005. Surveillance of H5N1 viruses in live bird markets (LBMs) during 2012 and 2013 was carried out to provide epidemiologic and virologic information regarding viral circulation and the risk of human exposure. Real-time RT-PCR of avian cloacal swabs and environmental samples revealed influenza A-positive specimens, which were then subjected to virus isolation and genomic sequencing. Genetic analysis of specimens collected at multiple LBMs in Indonesia identified both low pathogenicity avian influenza (LPAI) A(H3N8) and HPAI A(H5N1) viruses belonging to clade 2.1.3.2a. Comparison of internal gene segments among the LPAI and HPAI viruses revealed that the latter had acquired the PB2, PB1, and NS genes from LPAI progenitors and other viruses containing a wild type (wt) genomic constellation. Comparison of murine infectivity of the LPAI A(H3N8), wt HPAI A(H5N1) and reassortant HPAI A(H5N1) viruses showed that the acquisition of LPAI internal genes attenuated the reassortant HPAI virus, producing a mouse infectivity/virulence phenotype comparable to that of the LPAI virus. Comparison of molecular markers in each viral gene segment suggested that mutations in PB2 and NS1 may facilitate attenuation. The discovery of an attenuated HPAI A(H5N1) virus in mice that resulted from reassortment may have implications for the capability of these viruses to transmit and cause disease. In addition, surveillance suggests that LBMs in Indonesia may play a role in the generation of reassortant A(H5) viruses and should be monitored.


Assuntos
Vírus da Influenza A Subtipo H3N8/genética , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/virologia , Influenza Humana/virologia , Doenças das Aves Domésticas/virologia , Recombinação Genética , Animais , Galinhas , Criança , Pré-Escolar , Feminino , Humanos , Indonésia , Vírus da Influenza A Subtipo H3N8/isolamento & purificação , Vírus da Influenza A Subtipo H3N8/patogenicidade , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/patogenicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Virulência
13.
Hypertension ; 71(3): 518-529, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29358461

RESUMO

An increase in cytosolic free Ca2+ concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMCs) triggers pulmonary vasoconstriction and stimulates PASMC proliferation leading to vascular wall thickening. Here, we report that STIM2 (stromal interaction molecule 2), a Ca2+ sensor in the sarcoplasmic reticulum membrane, is required for raising the resting [Ca2+]cyt in PASMCs from patients with pulmonary arterial hypertension (PAH) and activating signaling cascades that stimulate PASMC proliferation and inhibit PASMC apoptosis. Downregulation of STIM2 in PAH-PASMCs reduces the resting [Ca2+]cyt, whereas overexpression of STIM2 in normal PASMCs increases the resting [Ca2+]cyt The increased resting [Ca2+]cyt in PAH-PASMCs is associated with enhanced phosphorylation (p) of CREB (cAMP response element-binding protein), STAT3 (signal transducer and activator of transcription 3), and AKT, increased NFAT (nuclear factor of activated T-cell) nuclear translocation, and elevated level of Ki67 (a marker of cell proliferation). Furthermore, the STIM2-associated increase in the resting [Ca2+]cyt also upregulates the antiapoptotic protein Bcl-2 in PAH-PASMCs. Downregulation of STIM2 in PAH-PASMCs with siRNA (1) decreases the level of pCREB, pSTAT3, and pAKT and inhibits NFAT nuclear translocation, thereby attenuating proliferation, and (2) decreases Bcl-2, which leads to an increase of apoptosis. In summary, these data indicate that upregulated STIM2 in PAH-PASMCs, by raising the resting [Ca2+]cyt, contributes to enhancing PASMC proliferation by activating the CREB, STAT3, AKT, and NFAT signaling pathways and stimulating PASMC proliferation. The STIM2-associated increase in the resting [Ca2+]cyt is also involved in upregulating Bcl-2 that makes PAH-PASMCs resistant to apoptosis, and thus plays an important role in sustained pulmonary vasoconstriction and excessive pulmonary vascular remodeling in patients with PAH.


Assuntos
Apoptose/genética , Regulação da Expressão Gênica , Hipertensão Pulmonar/genética , Músculo Liso Vascular/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Molécula 2 de Interação Estromal/genética , Sinalização do Cálcio/fisiologia , Proliferação de Células/genética , Células Cultivadas , Humanos , Hipertensão Pulmonar/fisiopatologia , Sensibilidade e Especificidade , Regulação para Cima
14.
Emerg Infect Dis ; 23(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29148400

RESUMO

An outbreak of influenza A(H7N2) virus in cats in a shelter in New York, NY, USA, resulted in zoonotic transmission. Virus isolated from the infected human was closely related to virus isolated from a cat; both were related to low pathogenicity avian influenza A(H7N2) viruses detected in the United States during the early 2000s.


Assuntos
Doenças do Gato/epidemiologia , Surtos de Doenças , Genoma Viral , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H7N2/genética , Influenza Aviária/epidemiologia , Zoonoses/epidemiologia , Animais , Antígenos Virais/química , Antígenos Virais/genética , Antígenos Virais/metabolismo , Sítios de Ligação , Aves , Doenças do Gato/transmissão , Doenças do Gato/virologia , Gatos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Abrigo para Animais , Humanos , Vírus da Influenza A Subtipo H7N2/classificação , Vírus da Influenza A Subtipo H7N2/isolamento & purificação , Influenza Aviária/transmissão , Influenza Aviária/virologia , Modelos Moleculares , New York/epidemiologia , Polissacarídeos/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo , Médicos Veterinários , Zoonoses/transmissão , Zoonoses/virologia
15.
Emerg Infect Dis ; 23(9): 1551-1555, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28820376
16.
Acta Med Centro ; 11(1)ene.-mar. 2017. tab, graf
Artigo em Espanhol | CUMED | ID: cum-69545

RESUMO

Introducción: el choque séptico es causa frecuente de mortalidad en niños en el mundo, representa la primera causa de ingreso en las unidades de cuidados intensivos no coronarios y es una enfermedad emergente. Objetivo: describir los resultados de la terapia con líquidos en pacientes con choque séptico en el Hospital José Luis Miranda en un año de estudio. Método: se realizó un estudio descriptivo, longitudinal, prospectivo entre enero y diciembre de 2012 con pacientes ingresados en la Unidad de Cuidados Intensivos del hospital. Los datos se registraron en el programa profesional estadístico SPSS versión 15.0, la información se mostró en tablas y gráficos y se aplicaron pruebas de estadística inferencial. Resultados: el grupo de edad más afectado fue el de un mes a un año, del sexo masculino; las infecciones respiratorias agudas graves fueron las etiologías más frecuentes; la administración de líquidos endovenosos contribuyó a la recuperación de parámetros clínicos relacionados con la perfusión a las seis horas; con la administración de 60ml/kg de líquidos endovenosos hubo una recuperación de la tensión arterial en la mayoría de los niños. Conclusiones: la administración agresiva y precoz de líquidos endovenosos contribuye a la recuperación de parámetros clínicos relacionados con la perfusión a las seis horas y a la reducción de la mortalidad en niños con choque séptico(AU)


Assuntos
Humanos , Criança , Choque Séptico/mortalidade , Choque Séptico/prevenção & controle , Hidratação/métodos , Infecções Respiratórias/complicações , Infecções Respiratórias/terapia , Epidemiologia Descritiva , Estudos Prospectivos , Estudos Longitudinais
17.
Nat Commun ; 7: 11496, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27193971

RESUMO

ISG15 is an interferon (IFN)-α/ß-induced ubiquitin-like protein. It exists as a free molecule, intracellularly and extracellularly, and conjugated to target proteins. Studies in mice have demonstrated a role for Isg15 in antiviral immunity. By contrast, human ISG15 was shown to have critical immune functions, but not in antiviral immunity. Namely, free extracellular ISG15 is crucial in IFN-γ-dependent antimycobacterial immunity, while free intracellular ISG15 is crucial for USP18-mediated downregulation of IFN-α/ß signalling. Here we describe ISG15-deficient patients who display no enhanced susceptibility to viruses in vivo, in stark contrast to Isg15-deficient mice. Furthermore, fibroblasts derived from ISG15-deficient patients display enhanced antiviral protection, and expression of ISG15 attenuates viral resistance to WT control levels. The species-specific gain-of-function in antiviral immunity observed in ISG15 deficiency is explained by the requirement of ISG15 to sustain USP18 levels in humans, a mechanism not operating in mice.


Assuntos
Citocinas/metabolismo , Ubiquitinas/metabolismo , Viroses/imunologia , Animais , Linhagem Celular , Citocinas/genética , Citocinas/imunologia , Feminino , Regulação da Expressão Gênica , Humanos , Interferons/metabolismo , Camundongos , Cultura Primária de Células , Ubiquitina Tiolesterase/metabolismo , Ubiquitinas/genética , Ubiquitinas/imunologia
18.
J Virol ; 88(16): 9277-86, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24899198

RESUMO

UNLABELLED: Human noroviruses (HuNoV) are the leading cause of nonbacterial gastroenteritis worldwide. Similar to HuNoV, murine noroviruses (MNV) are enteric pathogens spread via the fecal-oral route and have been isolated from numerous mouse facilities worldwide. Type I and type II interferons (IFN) restrict MNV-1 replication; however, the antiviral effectors impacting MNV-1 downstream of IFN signaling are largely unknown. Studies using dendritic cells, macrophages, and mice deficient in free and conjugated forms of interferon-stimulated gene 15 (ISG15) revealed that ISG15 conjugation contributes to protection against MNV-1 both in vitro and in vivo. ISG15 inhibited a step early in the viral life cycle upstream of viral genome transcription. Directly transfecting MNV-1 RNA into IFN-stimulated mouse embryonic fibroblasts (MEFs) and bone marrow-derived dendritic cells (BMDC) lacking ISG15 conjugates bypassed the antiviral activity of ISG15, further suggesting that ISG15 conjugates restrict the MNV-1 life cycle at the viral entry/uncoating step. These results identify ISG15 as the first type I IFN effector regulating MNV-1 infection both in vitro and in vivo and for the first time implicate the ISG15 pathway in the regulation of early stages of MNV-1 replication. IMPORTANCE: Type I IFNs are important in controlling murine norovirus 1 (MNV-1) infections; however, the proteins induced by IFNs that restrict viral growth are largely unknown. This report reveals that interferon-stimulated gene 15 (ISG15) mitigates MNV-1 replication both in vitro and in vivo. In addition, it shows that ISG15 inhibits MNV-1 replication by targeting an early step in the viral life cycle, MNV-1 entry and/or uncoating. These results identify ISG15 as the first type I IFN effector regulating MNV-1 infection both in vitro and in vivo and for the first time implicate the ISG15 pathway in the regulation of viral entry/uncoating.


Assuntos
Antivirais/metabolismo , Citocinas/genética , Citocinas/metabolismo , Interferon Tipo I/metabolismo , Estágios do Ciclo de Vida/genética , Norovirus/genética , Animais , Linhagem Celular , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Genoma Viral/genética , Interferon Tipo I/genética , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Transcrição Gênica/genética , Ubiquitinas/genética , Ubiquitinas/metabolismo , Replicação Viral/genética
19.
Rev. peru. biol. (Impr.) ; 19(1): 81-88, abr. 2012. ilus, tab, graf
Artigo em Espanhol | LIPECS | ID: biblio-1111437

RESUMO

El Perú es uno de los principales países en la extracción de minerales como el oro, zinc, plomo y estaño. En la producción de oro se utiliza cianuro, el cual es tóxico para el medio ambiente, y que por reacción natural con el azufre se convierte en tiocianato (-SCN). En el presente trabajo se aislan hongos con capacidad de degradar tiocianato procedentes de aguas y suelos de zonas mineras de Junín y Tumbes. Estas cepas se sometieron a ensayos con concentraciones de tiocianato entre 5 y 600 mM. Asimismo, se evaluó la cinética de degradación de tiocianato en medio Kwon partiendo de 1,2 g.L-1 de KSCN y luego se realizó la identificación morfológica. De un total de 58 mohos aislados, obtuvimos 4 mohos con excelentes capacidades de degradar tiocianato y que pueden ser utilizados en biorremediación. La capacidad degradativa de estas cepas fue en promedio 10,05 mg.L-1 de -SCN con una velocidad de 28,77 mg.L-1.h-1. Dos cepas fueron identificadas fenotípica y molecularmente como Fusarium trincictum usando el marcador ITS del gen rDNA.


Peru is one of the principal countries in mining extraction of minerals like gold, zinc, plumb and tin. Cyanide is used in gold production this compound is very toxic especially for environment, by nature reaction with sulfur it converts into thiocyanate (-SCN). In this paper, we isolate -SCN degrading fungus from Junin and Tumbes mining zones. Strains were assayed on 5 to 600 mM -SCN concentration, at least thiocyanate degrading kinetic was assayed at 1.2 g.L-1 of KSCN initial concentration, then the best strains had been morphological, biochemical and molecular identified using ITS RNA molecular marker. From 58 isolated fungus we found 4 unparfait funguses with a great thiocyanate degrading capacity those strains could be used for bioremediation processes. Thiocyanate degrading capacity of these strains was 50 g.L-1 on plate into 72 hours and their average capacity was 10.05 mg.L-1 -SCN with an standard velocity of -SCN degradation of 28.77 mg.L-1.h-1. Two strains were molecular identified as Fusarium trincictum by using ITS rDNA gene.


Assuntos
Fusarium , Mineração , Tiocianatos
20.
J Gerontol A Biol Sci Med Sci ; 66(12): 1286-99, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21873593

RESUMO

We examined the effects of increased levels of thioredoxin 1 (Trx1) on resistance to oxidative stress and aging in transgenic mice overexpressing Trx1 [Tg(TRX1)(+/0)]. The Tg(TRX1)(+/0) mice showed significantly higher Trx1 protein levels in all the tissues examined compared with the wild-type littermates. Oxidative damage to proteins and levels of lipid peroxidation were significantly lower in the livers of Tg(TRX1)(+/0) mice compared with wild-type littermates. The survival study demonstrated that male Tg(TRX1)(+/0) mice significantly extended the earlier part of life span compared with wild-type littermates, but no significant life extension was observed in females. Neither male nor female Tg(TRX1)(+/0) mice showed changes in maximum life span. Our findings suggested that the increased levels of Trx1 in the Tg(TRX1)(+/0) mice were correlated to increased resistance to oxidative stress, which could be beneficial in the earlier part of life span but not the maximum life span in the C57BL/6 mice.


Assuntos
Longevidade/genética , Longevidade/fisiologia , Tiorredoxinas/genética , Tiorredoxinas/fisiologia , 8-Hidroxi-2'-Desoxiguanosina , Envelhecimento/genética , Envelhecimento/patologia , Envelhecimento/fisiologia , Animais , Antioxidantes/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Diquat/toxicidade , Feminino , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Peroxidação de Lipídeos , Fígado/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , NF-kappa B/genética , Oxirredução , Estresse Oxidativo , Caracteres Sexuais , Tiorredoxinas/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...