Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
ISME J ; 15(12): 3468-3479, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34108667

RESUMO

Understanding how organisms adapt to extreme living conditions is central to evolutionary biology. Dark septate endophytes (DSEs) constitute an important component of the root mycobiome and they are often able to alleviate host abiotic stresses. Here, we investigated the molecular mechanisms underlying the beneficial association between the DSE Laburnicola rhizohalophila and its host, the native halophyte Suaeda salsa, using population genomics. Based on genome-wide Fst (pairwise fixation index) and Vst analyses, which compared the variance in allele frequencies of single-nucleotide polymorphisms (SNPs) and copy number variants (CNVs), respectively, we found a high level of genetic differentiation between two populations. CNV patterns revealed population-specific expansions and contractions. Interestingly, we identified a ~20 kbp genomic island of high divergence with a strong sign of positive selection. This region contains a melanin-biosynthetic polyketide synthase gene cluster linked to six additional genes likely involved in biosynthesis, membrane trafficking, regulation, and localization of melanin. Differences in growth yield and melanin biosynthesis between the two populations grown under 2% NaCl stress suggested that this genomic island contributes to the observed differences in melanin accumulation. Our findings provide a better understanding of the genetic and evolutionary mechanisms underlying the adaptation to saline conditions of the L. rhizohalophila-S. salsa symbiosis.


Assuntos
Ascomicetos , Chenopodiaceae , Ilhas Genômicas , Plantas Tolerantes a Sal/microbiologia , Ascomicetos/genética , Chenopodiaceae/microbiologia , Endófitos/genética , Melaninas , Pigmentação
3.
Microorganisms ; 9(5)2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33922997

RESUMO

Studies were undertaken to determine if fungal endophytes from plants in stressful habitats could be commercialized to generate climate resilient crop plants. Fungal endophytes were isolated from weedy rice plants and grasses from South Korea and the USA, respectively. Endophytes (Curvularia brachyspora and Fusarium asiaticum) from weedy rice plants from high salt or drought stressed habitats in South Korea conferred salt and drought stress tolerance to weedy rice and commercial varieties reflective of the habitats from which they were isolated. Fungal endophytes isolated from grasses in arid habitats of the USA were identified as Trichoderma harzianum and conferred drought and heat stress tolerance to monocots and eudicots. Two T. harzianum isolates were exposed to UV mutagenesis to derive strains resistant to fungicides in seed treatment plant protection packages. Three strains that collectively had resistance to commonly used fungicides were used for field testing. The three-strain mixture (ThSM3a) increased crop yields proportionally to the level of stress plants experienced with average yields up to 52% under high and 3-5% in low stress conditions. This study demonstrates fungal endophytes can be developed as viable commercial tools for rapidly generating climate resilient crops to enhance agricultural sustainability.

4.
Mol Plant Microbe Interact ; 34(6): 703-706, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33461337

RESUMO

Genus Fusarium (Ascomycota, Hypocreales, Nectriaceae) includes many economically important plant pathogens that cause devastating diseases of a wide range of crops and trees. Interestingly, there is increasing evidence that some Fusarium species also live as endophytes and benefit plant growth and stress tolerance. In this work, we sequence the whole genomes of endophytic F. culmorum and F. pseudograminearum, isolated from a coastal dunegrass (Leymus mollis), using long-read single-molecule real-time sequencing technology. Their genomes are assembled into four chromosomes and a mitochondrial genome with a total assembly size of 40.05 and 42.90 M, respectively. This resource should not only facilitate functional studies designed to better understand what makes the two Fusarium species such successful plant-beneficial fungi but should also reveal their genome evolution and adaptation.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos , Fusarium , Genoma Mitocondrial , Cromossomos , Endófitos/genética , Fusarium/genética , Doenças das Plantas
5.
Life (Basel) ; 8(3)2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30200614

RESUMO

In this work, we explore the biodiversity of culturable microfungi from the water column of a permanently ice-covered lake in Taylor Valley, Antarctica from austral field seasons in 2003, 2008 and 2010, as well as from glacial stream input (2010). The results revealed that there was a sharp decline in total culturable fungal abundance between 9 and 11 m lake depth with a concurrent shift in diversity. A total of 29 species were identified from all three water sources with near even distribution between Ascomycota and Basidomycota (15 and 14 respectively). The most abundant taxa isolated from Lake Fryxell in 2008 were Glaciozyma watsonii (59%) followed by Penicillium spp. (10%), both of which were restricted to 9 m and above. Although seven species were found below the chemocline of 11 m in 2008, their abundance comprised only 10% of the total culturable fungi. The taxa of isolates collected from glacial source input streams had little overlap with those found in Lake Fryxell. The results highlight the spatial discontinuities of fungal populations that can occur within connected oligotrophic aquatic habitats.

6.
Analyst ; 135(12): 3249-54, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20963233

RESUMO

FTIR and Raman spectromicroscopy were used to characterize the composition of Curvularia protuberata hyphae, and to compare a strain isolated from plants inhabiting geothermal soils with a non-geothermal isolate. Thermal IR source images of hyphae have been acquired with a 64 × 64 element focal plane array detector; single point IR spectra have been obtained with synchrotron source light. In some C. protuberata hyphae, we have discovered the spectral signature of crystalline mannitol, a fungal polyol with complex protective roles. With FTIR-FPA imaging, we have determined that the protein content in cells remains fairly constant throughout the length of a hypha, whereas the mannitol is found at discrete, irregular locations. This is the first direct observation of mannitol in intact fungal hyphae. Since the concentration of mannitol in cells varies with respect to position and is not present in all hyphae, this discovery may be related to habitat adaptation, fungal structure and growth stages.


Assuntos
Fungos/química , Fungos/citologia , Hifas/química , Manitol/análise , Microscopia/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos , Proteínas Fúngicas/análise , Síncrotrons
7.
Commun Integr Biol ; 2(2): 141-3, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19704912

RESUMO

The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at five times the rate observed in nonsymbiotic plants. Endophytes also influenced sexual reproduction of mature big sagebrush (Artemisia tridentata) plants. Two spatially distinct big sagebrush subspecies and their hybrids were symbiotic with unique fungal endophytes, despite being separated by only 380 m distance and 60 m elevation. A double reciprocal transplant experiment of parental and hybrid plants, and soils across the hybrid zone showed that fungal endophytes interact with the soils and different plant genotypes to confer enhanced plant reproduction in soil native to the endophyte and reduced reproduction in soil alien to the endophyte. Moreover, the most prevalent endophyte of the hybrid zone reduced the fitness of both parental subspecies. Because these endophytes are passed to the next generation of plants on seed coats, this interaction provides a selective advantage, habitat specificity, and the means of restricting gene flow, thereby making the hybrid zone stable, narrow and potentially leading to speciation.

8.
Science ; 315(5811): 513-5, 2007 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-17255511

RESUMO

A mutualistic association between a fungal endophyte and a tropical panic grass allows both organisms to grow at high soil temperatures. We characterized a virus from this fungus that is involved in the mutualistic interaction. Fungal isolates cured of the virus are unable to confer heat tolerance, but heat tolerance is restored after the virus is reintroduced. The virus-infected fungus confers heat tolerance not only to its native monocot host but also to a eudicot host, which suggests that the underlying mechanism involves pathways conserved between these two groups of plants.


Assuntos
Ascomicetos/fisiologia , Ascomicetos/virologia , Poaceae/microbiologia , Poaceae/fisiologia , Vírus de RNA/fisiologia , Simbiose , Ascomicetos/crescimento & desenvolvimento , Sequência de Bases , Temperatura Alta , Solanum lycopersicum/microbiologia , Solanum lycopersicum/fisiologia , Dados de Sequência Molecular , Fases de Leitura Aberta , Folhas de Planta/metabolismo , Poaceae/crescimento & desenvolvimento , Vírus de RNA/classificação , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Am J Bot ; 94(3): 425-36, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21636412

RESUMO

When addressing the nature of ecological adaptation and environmental factors limiting population ranges and contributing to speciation, it is important to consider not only the plant's genotype and its response to the environment, but also any close interactions that it has with other organisms, specifically, symbiotic microorganisms. To investigate this, soils and seedlings were reciprocally transplanted into common gardens of the big sagebrush hybrid zone in Salt Creek Canyon, Utah, to determine location and edaphic effects on the fitness of parental and hybrid plants. Endophytic symbionts and functional microbial diversity of indigenous and transplanted soils and sagebrush plants were also examined. Strong selection occurred against the parental genotypes in the middle hybrid zone garden in middle hybrid zone soil; F(1) hybrids had the highest fitness under these conditions. Neither of the parental genotypes had superior fitness in their indigenous soils and habitats; rather F(1) hybrids with the nonindigenous maternal parent were superiorly fit. Significant garden-by-soil type interactions indicate adaptation of both plant and soil microorganisms to their indigenous soils and habitats, most notably in the middle hybrid zone garden in middle hybrid zone soil. Contrasting performances of F(1) hybrids suggest asymmetrical gene flow with mountain, rather than basin, big sagebrush acting as the maternal parent. We showed that the microbial community impacted the performance of parental and hybrid plants in different soils, likely limiting the ranges of the different genotypes.

10.
Mol Ecol ; 13(9): 2773-88, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15315688

RESUMO

Hybridization between sympatric species provides unique opportunities to examine the contrast between mechanisms that promote hybridization and maintain species integrity. We surveyed hybridization between sympatric coastal steelhead (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki) from two streams in Washington State, Olsen Creek (256 individuals sampled) and Jansen Creek (431 individuals sampled), over a 3-year period. We applied 11 O. mykiss-specific nuclear markers, 11 O. c. clarki-specific nuclear markers and a mitochondrial DNA marker to assess spatial partitioning among species and hybrids and determine the directionality of hybridization. F1 and post-F1 hybrids, respectively, composed an average of 1.2% and 33.6% of the population sampled in Jansen Creek, and 5.9% and 30.4% of the population sampled in Olsen Creek. A modest level of habitat partitioning among species and hybrids was detected. Mitochondrial DNA analysis indicated that all F1 hybrids (15 from Olsen Creek and five from Jansen Creek) arose from matings between steelhead females and cutthroat males implicating a sneak spawning behaviour by cutthroat males. First-generation cutthroat backcrosses contained O. c. clarki mtDNA more often than expected suggesting natural selection against F1 hybrids. More hybrids were backcrossed toward cutthroat than steelhead and our results indicate recurrent hybridization within these creeks. Age analysis demonstrated that hybrids were between 1 and 4 years old. These results suggest that within sympatric salmonid hybrid zones, exogenous processes (environmentally dependent factors) help to maintain the distinction between parental types through reduced fitness of hybrids within parental environments while divergent natural selection promotes parental types through distinct adaptive advantages of parental phenotypes.


Assuntos
Demografia , Hibridização Genética , Oncorhynchus mykiss/genética , Fatores Etários , Análise de Variância , Animais , Pesos e Medidas Corporais , Primers do DNA , DNA Mitocondrial/genética , Eletroforese , Água Doce , Oncorhynchus mykiss/fisiologia , Comportamento Sexual Animal/fisiologia , Especificidade da Espécie , Washington
11.
Mycologia ; 95(5): 836-45, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-21148991

RESUMO

The genetic diversity and phylogeny of Bridgeoporus nobilissimus have been analyzed. DNA was extracted from spores collected from individual fruiting bodies representing six geographically distinct populations in Oregon and Washington. Spore samples collected contained low levels of bacteria, yeast and a filamentous fungal species. Using taxon-specific PCR primers, it was possible to discriminate among rDNA from bacteria, yeast, a filamentous associate and B. nobilissimus. Nuclear rDNA internal transcribed spacer (ITS) region sequences of B. nobilissimus were compared among individuals representing six populations and were found to have less than 2% variation. These sequences also were used to design dual and nested PCR primers for B. nobilissimus-specific amplification. Mitochondrial small-subunit rDNA sequences were used in a phylogenetic analysis that placed B. nobilissimus in the hymenochaetoid clade, where it was associated with Oxyporus and Schizopora.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...