Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464149

RESUMO

Alcohol consumption is believed to affect Alzheimer's disease (AD) risk, but the contributing mechanisms are not well understood. A potential mediator of the proposed alcohol-AD connection is autophagy, a degradation pathway that maintains organelle and protein homeostasis. Autophagy is in turn regulated through the activity of Transcription factor EB (TFEB), which promotes lysosome and autophagy-related gene expression. To explore the effect of alcohol on brain TFEB and autophagy, we exposed young (3-month old) and aged (23-month old) mice to two alcohol-feeding paradigms and assessed biochemical, transcriptome, histology, and behavioral endpoints. In young mice, alcohol decreased hippocampal nuclear TFEB staining but increased SQSTM1/p62, LC3-II, ubiquitinated proteins, and phosphorylated Tau. Hippocampal TFEB activity was lower in aged mice than it was in young mice, and Gao-binge alcohol feeding did not worsen the age-related reduction in TFEB activity. To better assess the impact of chronic alcohol exposure, we fed young and aged mice alcohol for four weeks before completing Morris Water and Barnes Maze spatial memory testing. The aged mice showed worse spatial memory on both tests. While alcohol feeding slightly impaired spatial memory in the young mice, it had little effect or even slightly improved spatial memory in the aged mice. These findings suggest that aging is a far more important driver of spatial memory impairment and reduced autophagy flux than alcohol consumption.

2.
Biochem Pharmacol ; 213: 115576, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37127251

RESUMO

Alzheimer's disease (AD) is the most common form of progressive dementia and there is no truly efficacious treatment. Accumulating evidence indicates that impaired autophagic function for removal of damaged mitochondria and protein aggregates such as amyloid and tau protein aggregates may contribute to the pathogenesis of AD. Epidemiologic studies have implicated alcohol abuse in promoting AD, yet the underlying mechanisms are poorly understood. In this review, we discuss mechanisms of selective autophagy for mitochondria and protein aggregates and how these mechanisms are impaired by aging and alcohol consumption. We also discuss potential genetic and pharmacological approaches for targeting autophagy/mitophagy, as well as lysosomal and mitochondrial biogenesis, for the potential prevention and treatment of AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Agregados Proteicos , Autofagia , Mitofagia/genética , Etanol , Fatores de Transcrição , Peptídeos beta-Amiloides/metabolismo
3.
ACS Pharmacol Transl Sci ; 6(2): 306-319, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36798471

RESUMO

Charcot-Marie-Tooth X1 (CMTX1) disease is an inherited peripheral neuropathy that arises from loss-of-function mutations in the protein connexin 32 (Cx32). CMTX1 currently lacks a pharmacologic approach toward disease management, and we have previously shown that modulating the expression of molecular chaperones using novologue therapy may provide a viable disease-modifying approach to treat metabolic and demyelinating neuropathies. Cemdomespib is an orally bioavailable novologue that manifests neuroprotective activity by modulating the expression of heat shock protein 70 (Hsp70). We examined if 1 to 5 months of daily cemdomespib therapy may improve neuropathic symptoms in three mouse models of CMTX1 (Cx32 deficient (Cx32def), T55I-Cx32def, and R75W-Cx32 mice). Daily drug therapy significantly improved motor nerve conduction velocity (MNCV) and grip strength in all three models, but the compound muscle action potential was only improved in Cx32def mice. Drug efficacy required Hsp70 as improvements in MNCV, and the grip strength was abrogated in Cx32def × Hsp70 knockout mice. Five months of novologue therapy was associated with improved neuromuscular junction morphology, femoral motor nerve myelination, reduction in foamy macrophages, and a decrease in Schwann cell c-jun levels. To determine if c-jun may be downstream of Hsp70 and necessary for drug efficacy, c-jun expression was specifically deleted in Schwann cells of Cx32def mice. While the deletion of c-jun worsened the neuropathy, cemdomespib therapy remained effective in improving MNCV and grip strength. Our data show that cemdomespib therapy improves CMTX1-linked neuropathy in an Hsp70-dependent but a c-jun-independent manner and without regard to the nature of the underlying Cx32 mutation.

4.
Liver Res ; 6(4): 227-237, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37124481

RESUMO

Background: Alcohol-associated liver disease (ALD) is a major chronic liver disease around the world without successful treatment. Acute alcoholic hepatitis is one of the most severe forms of ALD with high mortality, which is often associated with binge drinking. Alcohol drinking dysregulates lipid metabolism, increases adipose tissue lipolysis, and induces liver steatosis and adipose tissue atrophy. Increasing evidence implicates that crosstalk of liver and adipose tissue in the pathogenesis of ALD. Mechanistic target of rapamycin (mTOR) is a phosphatidylinositol 3-kinase (PI3K)-like serine/threonine protein kinase that regulates lipid metabolism, cell proliferation and autophagy. However, the role of mTOR in regulating adipose-liver crosstalk in binge drinking-induced organ damage remains unclear. Methods: We generated liver-specific and adipocyte-specific regulatory-associated protein of mTOR (Rptor) knockout (Rptor LKO and Rptor AKO) as well as Mtor knockout (Mtor LKO and Mtor AKO) mice, by crossing Rptor flox and Mtor flox mice with albumin Cre or adiponectin Cre mice, respectively. In addition, we generated liver and adipocyte double deletion of Rptor or Mtor (Mtor LAKO and Rptor LAKO) mice. The knockout mice with their matched wild-type littermates (Rptor WT and Mtor WT) were subjected to acute gavage of 7 g/kg ethanol. Results: Mice with adipocyte deletion of Rptor or Mtor developed hepatomegaly and adipose tissue atrophy. Alcohol gavage increased liver injury, hepatic steatosis and inflammation in mouse livers as demonstrated by elevated serum alanine aminotransferase activities, increased hepatic levels of triglyceride and increased hepatic numbers of CD68 positive macrophages in mouse livers after alcohol gavage. Liver injury was further exacerbated by deletion of adipocyte Rptor or Mtor. Serum adipokine array analysis revealed that increased levels of pro-inflammatory cytokines IL-6 and TNFα as well as chemokine MCP-1 following acute alcohol gavage in wild-type mice, which were further increased in adipocyte-specific Mtor or Rptor knockout mice. Conversely, levels of anti-inflammatory cytokine IL-10 decreased in adipocyte-specific Mtor or Rptor knockout mice. The levels of circulating fibroblast growth factor 21 (FGF21) increased whereas levels of circulating adiponectin and fetuin A decreased in wild-type mice after alcohol gavage. Intriguingly, adipocyte-specific Mtor or Rptor knockout mice already had decreased basal level of FGF21 which increased by alcohol gavage. Moreover, adipocyte-specific Mtor or Rptor knockout mice already had increased basal level of adiponectin and decreased fetuin A which were not further changed by alcohol gavage. Conclusions: Adipocyte but not hepatocyte ablation of Mtor pathway contributes to acute alcohol-induced liver injury with increased inflammation. Our results demonstrate the critical role of adipocyte mTOR in regulating the adipose-liver crosstalk in ALD.

5.
Autophagy ; 18(7): 1572-1582, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34709991

RESUMO

The pathogenesis of pancreatitis has been linked to disruption of organelle homeostasis including macroautophagy/autophagy dysfunction and endoplasmic reticulum (ER) stress. However, the direct impact of aberrant organelle function on pancreatitis initiation and progression is largely unknown. Recently an ER membrane protein, VMP1 (vacuole membrane protein 1), has been reported to play a crucial role in autophagosome formation. Notably, we found that VMP1 is downregulated in both human chronic pancreatitis (CP) and experimental mouse acute pancreatitis (AP). Pancreatic acinar cell-specific vmp1 deletion promotes inflammation, acinar-to-ductal metaplasia, and fibrosis in mice, sharing histological similarities with human CP. Mechanistically, loss of pancreatic VMP1 leads to defective autophagic degradation and ER stress as well as activation of the NFE2L2/Nrf2 pathway. Genetic ablation of NFE2L2 attenuated pancreatitis in VMP1-deficient mice. Our data highlight the importance of VMP1 in modulating an integrated organelle stress response and its functional role in maintaining pancreas homeostasis in the context of CP.Abbreviations: AMY: amylase; ADM: acinar-to-ductal metaplasia; AP: acute pancreatitis; CASP3: caspase 3; CP: chronic pancreatitis; DDIT3/CHOP: DNA damage inducible transcript 3; DKO, double knockout; ER: endoplasmic reticulum; GCLC: glutamate-cysteine ligase catalytic subunit; GCLM: glutamate-cysteine ligase modifier subunit; HSPA5/BIP: heat shock protein family A (Hsp70) member 5; KO: knockout; KRT19/CK19: keratin 19; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MPO: myeloperoxidase; NFE2L2/NRF2: nuclear factor, erythroid 2 like 2; ND: normal donor; NQO1: NAD(P)H quinone dehydrogenase 1; PCNA: proliferating cell nuclear antigen; RIPA: radio-immunoprecipitation; SQSTM1/p62: sequestosome 1; SOX9: SRY-box transcription factor 9; TAP: trypsinogen activation peptide; TFEB: transcription factor EB; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling; UB: ubiquitin; VMP1: vacuole membrane protein 1; XBP1: X-box binding protein 1; YAP1, Yes1 associated transcriptional regulator; ZG: zymogen granule.


Assuntos
Células Acinares , Proteínas de Membrana , Pancreatite Crônica , Células Acinares/metabolismo , Doença Aguda , Animais , Autofagia/genética , Glutamato-Cisteína Ligase/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Metaplasia/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo
6.
ACS Chem Neurosci ; 12(16): 3049-3059, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34340312

RESUMO

Diabetic peripheral neuropathy (DPN) is a complication of diabetes whose pathophysiology is linked to altered mitochondrial bioenergetics (mtBE). KU-596 is a small molecule neurotherapeutic that reverses symptoms of DPN, improves sensory neuron mtBE, and decreases the pro-oxidant protein, thioredoxin-interacting protein (Txnip) in a heat shock protein 70 (Hsp70)-dependent manner. However, the mechanism by which KU-596 improves mtBE and the role of Txnip in drug efficacy remains unknown. Mitophagy is a quality-control mechanism that selectively targets damaged mitochondria for degradation. The goal of this study was to determine if KU-596 therapy improved DPN, mtBE, and mitophagy in an Hsp70- and Txnip-dependent manner. Mito-QC (MQC) mice express a mitochondrially targeted mCherry-GFP fusion protein that enables visualizing mitophagy. Diabetic MQC, MQC × Hsp70 knockout (KO), and MQC × Txnip KO mice developed sensory and nerve conduction dysfunctions consistent with the onset of DPN. KU-596 therapy improved these measures, and this was dependent on Hsp70 but not Txnip. In MQC mice, diabetes decreased mtBE and increased mitophagy and KU-596 treatment reversed these effects. In contrast, KU-596 was unable to improve mtBE and decrease mitophagy in MQC × Hsp70 and MQC × Txnip KO mice. These data suggest that Txnip is not necessary for the development of the sensory symptoms and mitochondrial dysfunction induced by diabetes. KU-596 therapy may improve mitochondrial tolerance to diabetic stress to decrease mitophagic clearance in an Hsp70- and Txnip-dependent manner.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Animais , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/metabolismo , Metabolismo Energético , Proteínas de Choque Térmico HSP70/metabolismo , Camundongos , Mitocôndrias/metabolismo , Mitofagia , Células Receptoras Sensoriais/metabolismo , Tiorredoxinas/metabolismo
7.
Redox Biol ; 22: 101148, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30818124

RESUMO

Mitochondria damage plays a critical role in acetaminophen (APAP)-induced necrosis and liver injury. Cells can adapt and protect themselves by removing damaged mitochondria via mitophagy. PINK1-Parkin pathway is one of the major pathways that regulate mitophagy but its role in APAP-induced liver injury is still elusive. We investigated the role of PINK1-Parkin pathway in hepatocyte mitophagy in APAP-induced liver injury in mice. Wild-type (WT), PINK1 knockout (KO), Parkin KO, and PINK1 and Parkin double KO (DKO) mice were treated with APAP for different time points. Liver injury was determined by measuring serum alanine aminotransferase (ALT) activity, H&E staining as well as TUNEL staining of liver tissues. Tandem fluorescent-tagged inner mitochondrial membrane protein Cox8 (Cox8-GFP-mCherry) can be used to monitor mitophagy based on different pH stability of GFP and mCherry fluorescent proteins. We overexpressed Cox8-GFP-mCherry in mouse livers via tail vein injection of an adenovirus Cox8-GFP-mCherry. Mitophagy was assessed by confocal microscopy for Cox8-GFP-mCherry puncta, electron microscopy (EM) analysis for mitophagosomes and western blot analysis for mitochondrial proteins. Parkin KO and PINK1 KO mice improved the survival after treatment with APAP although the serum levels of ALT were not significantly different among PINK1 KO, Parkin KO and WT mice. We only found mild defects of mitophagy in PINK1 KO or Parkin KO mice after APAP, and improved survival in PINK1 KO and Parkin KO mice could be due to other functions of PINK1 and Parkin independent of mitophagy. In contrast, APAP-induced mitophagy was significantly impaired in PINK1-Parkin DKO mice. PINK1-Parkin DKO mice had further elevated serum levels of ALT and increased mortality after APAP administration. In conclusion, our results demonstrated that PINK1-Parkin signaling pathway plays a critical role in APAP-induced mitophagy and liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Deleção de Genes , Hepatócitos/metabolismo , Mitofagia/genética , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética , Animais , Biomarcadores , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Glutationa/metabolismo , Hepatócitos/ultraestrutura , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/metabolismo , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...