Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(27): eadi0263, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418522

RESUMO

Enzymatic DNA synthesis (EDS) is a promising benchtop and user-friendly method of nucleic acid synthesis that, instead of solvents and phosphoramidites, uses mild aqueous conditions and enzymes. For applications such as protein engineering and spatial transcriptomics that require either oligo pools or arrays with high sequence diversity, the EDS method needs to be adapted and certain steps in the synthesis process spatially decoupled. Here, we have used a synthesis cycle comprising a first step of site-specific silicon microelectromechanical system inkjet dispensing of terminal deoxynucleotidyl transferase enzyme and 3' blocked nucleotide, and a second step of bulk slide washing to remove the 3' blocking group. By repeating the cycle on a substrate with an immobilized DNA primer, we show that microscale spatial control of nucleic acid sequence and length is possible, which, here, are assayed by hybridization and gel electrophoresis. This work is distinctive for enzymatically synthesizing DNA in a highly parallel manner with single base control.


Assuntos
DNA Polimerase Dirigida por DNA , DNA , DNA/metabolismo , Hibridização de Ácido Nucleico , DNA Polimerase Dirigida por DNA/metabolismo , DNA Nucleotidilexotransferase/genética , DNA Nucleotidilexotransferase/metabolismo , Engenharia de Proteínas
2.
Synth Syst Biotechnol ; 7(2): 791-801, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35415278

RESUMO

Nucleic acid sensing is a 3 decades old but still challenging area of application for different biological sub-domains, from pathogen detection to single cell transcriptomics analysis. The many applications of nucleic acid detection and identification are mostly carried out by PCR techniques, sequencing, and their derivatives used at large scale. However, these methods' limitations on speed, cost, complexity and specificity have motivated the development of innovative detection methods among which nucleic acid biosensing technologies seem promising. Toehold switches are a particular class of RNA sensing devices relying on a conformational switch of secondary structure induced by the pairing of the detected trigger RNA with a de novo designed synthetic sensing mRNA molecule. Here we describe a streamlined methodology enabling the development of such a sensor for the RNA-mediated detection of an endangered plant species in a cell-free reaction system. We applied this methodology to help identify the rosewood Dalbergia maritima, a highly trafficked wood, whose protection is limited by the capacity of the authorities to distinguish protected logs from other unprotected but related species. The streamlined pipeline presented in this work is a versatile framework enabling cheap and rapid development of new sensors for custom RNA detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...