Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
PLoS One ; 18(8): e0289717, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37585384

RESUMO

This paper aims to concurrently select and control off-the-shelf BLDC motors of industrial robots by using a synergistic model-based approach. The BLDC motors are considered with trapezoidal back-emf, where the three-phase (a,b,c) dynamics of motors are modeled in a mechatronic powertrain model of the robot for the selection and control problem, defining it as a multi-objective dynamic optimization problem with static and dynamic constraints. Since the mechanical and electrical actuators' parameters modify the robot's performance, the selection process considers the actuators' parameters, their control input, operational limits, and the mechanical output to the transmission of the robot joints. Then, three objective functions are to be minimized, the motor's energy consumption, the tracking error, and the total weight of installed motors on the robot mechanism. The control parameterization approach via a cascade controller with PI controllers for actuators' voltage and a PID controller for actuators' torque is used to solve the multi-objective dynamic optimization problem. Based on simulations of the closed-loop system, a Pareto front is obtained to examine trade-offs among the objective functions before implementing any actuators in the existing robotic system. The proposed method is tested on an experimental platform to verify its effectiveness. The performance of an industrial robot with the actuators originally installed is compared with the results obtained by the synergic approach. The results of this comparison show that 10.85% of electrical power can be saved, and the trajectory tracking error improved up to 57.41% using the proposed methodology.


Assuntos
Robótica , Eletricidade , Torque
2.
Entropy (Basel) ; 25(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37190370

RESUMO

This article proposes a decentralized controller for differential mobile robots, providing autonomous navigation and obstacle avoidance by enforcing a formation toward trajectory tracking. The control system relies on dynamic modeling, which integrates evasion forces from obstacles, formation forces, and path-following forces. The resulting control loop can be seen as a dynamic extension of the kinematic model for the differential mobile robot, producing linear and angular velocities fed to the mobile robot's kinematic model and thus passed to the low-level wheel controller. Using the Lyapunov method, the closed-loop stability is proven for the non-collision case. Experimental and simulated results that support the stability analysis and the performance of the proposed controller are shown.

3.
Sensors (Basel) ; 21(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073126

RESUMO

This paper presents a navigation strategy for a platoon of n non-holonomic mobile robots with a time-varying spacing policy between each pair of successive robots at the platoon, such that a safe trailing distance is maintained at any speed, avoiding the robots getting too close to each other. It is intended that all the vehicles in the formation follow the trajectory described by the leader robot, which is generated by bounded input velocities. To establish a chain formation among the vehicles, it is required that, for each pair of successive vehicles, the (i+1)-th one follows the trajectory executed by the former i-th one, with a delay of τ(t) units of time. An observer is proposed to estimate the trajectory, velocities, and positions of the i-th vehicle, delayed τ(t) units of time, consequently generating the desired path for the (i+1)-th vehicle, avoiding numerical approximations of the velocities, rendering robustness against noise and corrupted or missing data as well as to external disturbances. Besides the time-varying gap, a constant-time gap is used to get a secure trailing distance between each two successive robots. The presented platoon formation strategy is analyzed and proven by using Lyapunov theory, concluding asymptotic convergence for the posture tracking between the (i+1)-th robot and the virtual reference provided by the observer that corresponds to the i-th robot. The strategy is evaluated by numerical simulations and real-time experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...