Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Ecol ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809282

RESUMO

Plant-microbe interactions play a pivotal role in shaping host fitness, especially concerning chemical defense mechanisms. In cycads, establishing direct correlations between specific endophytic microbes and the synthesis of highly toxic defensive phytochemicals has been challenging. Our research delves into the intricate relationship between plant-microbe associations and the variation of secondary metabolite production in two closely related Zamia species that grow in distinct habitats; terrestrial and epiphytic. Employing an integrated approach, we combined microbial metabarcoding, which characterize the leaf endophytic bacterial and fungal communities, with untargeted metabolomics to test if the relative abundances of specific microbial taxa in these two Zamia species were associated with different metabolome profiles. The two species studied shared approximately 90% of the metabolites spanning diverse biosynthetic pathways: alkaloids, amino acids, carbohydrates, fatty acids, polyketides, shikimates, phenylpropanoids, and terpenoids. Co-occurrence networks revealed positive associations among metabolites from different pathways, underscoring the complexity of their interactions. Our integrated analysis demonstrated to some degree that the intraspecific variation in metabolome profiles of the two host species was associated with the abundance of bacterial orders Acidobacteriales and Frankiales, as well as the fungal endophytes belonging to the orders Chaetothyriales, Glomerellales, Heliotiales, Hypocreales, and Sordariales. We further associate individual metabolic similarity with four specific fungal endophyte members of the core microbiota, but no specific bacterial taxa associations were identified. This study represents a pioneering investigation to characterize leaf endophytes and their association with metabolomes in tropical gymnosperms, laying the groundwork for deeper inquiries into this complex domain.

2.
Ecol Evol ; 12(3): e8769, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35356569

RESUMO

Epiphytic lifestyles have evolved independently in ecologically, morphologically, and taxonomically diverse plant species. Although this adaptation is widespread among angiosperms, it is only known to have arisen in a single gymnosperm species, Zamia pseudoparasitica (Cycadophyta). Zamia pseudoparasitica is endemic to the mountains of Western Panama, and little is known about the ecology of this unusual cycad. Here, we provide the first report of a potential seed disperser of Z. pseudoparasitica. Between late October 2019 and March 2020, we conducted arboreal camera trapping at three sites along the Talamanca Cordillera in Western Panama, yielding an accumulated survey effort of 271 camera days. Weekly direct observations were also performed using handheld binoculars at one site. Arboreal camera trapping revealed at least seven mammal species that visit this epiphytic cycad. At all three sites, the Northern olingo (Bassaricyon gabbii) was seen visiting individuals of Z. pseudoparasitica repeatedly, both while cones were closed and after they had opened. We estimated the time-varying intensity of the visits throughout our sampling and used mixed models to compare the length of visits when cones were closed versus when they were open. Both duration and time-varying intensity of visits increased after cones had opened and we documented Northern olingo removing and carrying away seeds. We also observed predation by the yellow-eared toucanet (Selenidera spectabilis) which picked and destroyed mature Z. pseudoparasitica seeds. These results suggest that the Northern olingo could be an important seed dispersal agent for this rare epiphytic gymnosperm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...