Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 19(21): 2885-2893, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30076748

RESUMO

Ionic liquids derived from prolinium esters, previously described as fully green and stable, were found to decompose in the presence of water by ester hydrolysis. To avoid this problem, a new family of these biodegradable salts incorporating an alcohol instead of the ester group is proposed. From this family, two novel ionic liquids that incorporate the prolinolium cation [HOPro] and the [DS] or [DBS] anion were selected (DS=dodecylsulfate; DBS=dodecylbenzenesulfonate). Both salts are liquid at room temperature, a property not usually found in ionic surfactants, and are also chemically and thermally stable. Moreover, they are more effective in reducing the surface tension of water than the corresponding traditional surfactants in the form of sodium salts, being useful for applications related to their aggregation capacity. They were tested for surfactant enhanced oil recovery and an optimal formulation for reservoirs at high salinity and temperature, able to produce ultra-low interfacial tension, was found with [HOPro][DBS].

2.
J Colloid Interface Sci ; 504: 404-416, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28595151

RESUMO

Chemical flooding with surfactants for reducing oil-brine interfacial tensions (IFTs) to mobilize residual oil trapped by capillary forces has a great potential for Enhanced Oil Recovery (EOR). Surface-active ionic liquids (SAILs) constitute a class of surfactants that has recently been proposed for this application. For the first time, SAILs or their blends with an anionic surfactant are studied by determining equilibrium phase behavior for systems of about unit water-oil ratio at various temperatures. The test fluids were model alkane and aromatic oils, NaCl brine, and synthetic hard seawater (SW). Patterns of microemulsions observed are those of classical phase behavior (Winsor I-III-II transition) known to correlate with low IFTs. The two anionic room-temperature SAILs tested were made from common anionic surfactants by substituting imidazolium or phosphonium cations for sodium. These two anionic and two cationic SAILs were found to have little potential for EOR when tested individually. Thus, also tested were blends of an anionic internal olefin sulfonate (IOS) surfactant with one of the anionic SAILs and both cationic SAILs. Most promising for EOR was the anionic/cationic surfactant blend of IOS with [C12mim]Br in SW. A low equilibrium IFT of ∼2·10-3mN/m was measured between n-octane and an aqueous solution having the optimal blend ratio for this system at 25°C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA