Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0299275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843236

RESUMO

Previous literature suggests that mindfulness meditation can have positive effects on mental health, however, its mechanisms of action are still unclear. In this pre-registered study, we investigate the effects of mindfulness training on lapses of attention (and their associated neural correlates) during meditation practice. For this purpose, we recorded Electroencephalogram (EEG) during meditation practice before and after 8 weeks of mindfulness training (or waitlist) in 41 participants (21 treatment and 20 controls). In order to detect lapses of attention and characterize their EEG correlates, we interrupted participants during meditation to report their level of focus and drowsiness. First, we show that self-reported lapses of attention during meditation practice were associated to an increased occurrence of theta oscillations (3-6 Hz), which were slower in frequency and more spatially widespread than theta oscillations occurring during focused attention states. Then, we show that mindfulness training did not reduce the occurrence of lapses of attention nor their associated EEG correlate (i.e. theta oscillations) during meditation. Instead, we find that mindfulness training was associated with a significant slowing of alpha oscillations in frontal electrodes during meditation. Crucially, frontal alpha slowing during meditation practice has been reported in experienced meditators and is thought to reflect relative decreases in arousal levels. Together, our findings provide insights into the EEG correlates of mindfulness meditation, which could have important implications for the identification of its mechanisms of action and/or the development of neuromodulation protocols aimed at facilitating meditation practice.


Assuntos
Atenção , Eletroencefalografia , Meditação , Atenção Plena , Autorrelato , Humanos , Meditação/psicologia , Meditação/métodos , Atenção Plena/métodos , Masculino , Feminino , Adulto , Atenção/fisiologia , Pessoa de Meia-Idade
2.
bioRxiv ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38712259

RESUMO

There has been an increasing interest in identifying the biological underpinnings of human time perception, for which purpose research in non-human primates (NHP) is common. Although previous work, based on behaviour, suggests that similar mechanisms support time perception across species, the neural correlates of time estimation in humans and NHP have not been directly compared. In this study, we assess whether brain evoked responses during a time categorization task are similar across species. Specifically, we assess putative differences in post-interval evoked potentials as a function of perceived duration in human EEG (N = 24) and local field potential (LFP) and spike recordings in pre-supplementary motor area (pre-SMA) of one monkey. Event-related potentials (ERPs) differed significantly after the presentation of the temporal interval between "short" and "long" perceived durations in both species, even when the objective duration of the stimuli was the same. Interestingly, the polarity of the reported ERPs was reversed for incorrect trials (i.e., the ERP of a "long" stimulus looked like the ERP of a "short" stimulus when a time categorization error was made). Hence, our results show that post-interval potentials reflect the perceived (rather than the objective) duration of the presented time interval in both NHP and humans. In addition, firing rates in monkey's pre-SMA also differed significantly between short and long perceived durations and were reversed in incorrect trials. Together, our results show that common neural mechanisms support time categorization in NHP and humans, thereby suggesting that NHP are a good model for investigating human time perception.

3.
bioRxiv ; 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37292960

RESUMO

Human working memory is associated with significant modulations in oscillatory brain activity. However, the functional role of brain rhythms at different frequencies is still debated. Modulations in the beta frequency range (15-40 Hz) are especially difficult to interpret because they could be artifactually produced by (more prominent) oscillations in lower frequencies that show non-sinusoidal properties. In this study, we investigate beta oscillations during working memory while controlling for the possible influence of lower frequency rhythms. We collected electroencephalography (EEG) data in 31 participants who performed a spatial working-memory task with two levels of cognitive load. In order to rule out the possibility that observed beta activity was affected by non-sinusoidalities of lower frequency rhythms, we developed an algorithm that detects transient beta oscillations that do not coincide with more prominent lower frequency rhythms in time and space. Using this algorithm, we show that the amplitude and duration of beta bursts decrease with memory load and during memory manipulation, while their peak frequency and rate increase. In addition, interindividual differences in performance were significantly associated with beta burst rates. Together, our results show that beta rhythms are functionally modulated during working memory and that these changes cannot be attributed to lower frequency rhythms with non-sinusoidal properties.

4.
Curr Res Neurobiol ; 3: 100056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518347

RESUMO

In meditation practices that involve focused attention to a specific object, novice practitioners often experience moments of distraction (i.e., mind wandering). Previous studies have investigated the neural correlates of mind wandering during meditation practice through Electroencephalography (EEG) using linear metrics (e.g., oscillatory power). However, their results are not fully consistent. Since the brain is known to be a chaotic/nonlinear system, it is possible that linear metrics cannot fully capture complex dynamics present in the EEG signal. In this study, we assess whether nonlinear EEG signatures can be used to characterize mind wandering during breath focus meditation in novice practitioners. For that purpose, we adopted an experience sampling paradigm in which 25 participants were iteratively interrupted during meditation practice to report whether they were focusing on the breath or thinking about something else. We compared the complexity of EEG signals during mind wandering and breath focus states using three different algorithms: Higuchi's fractal dimension (HFD), Lempel-Ziv complexity (LZC), and Sample entropy (SampEn). Our results showed that EEG complexity was generally reduced during mind wandering relative to breath focus states. We conclude that EEG complexity metrics are appropriate to disentangle mind wandering from breath focus states in novice meditation practitioners, and therefore, they could be used in future EEG neurofeedback protocols to facilitate meditation practice.

5.
eNeuro ; 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36171059

RESUMO

Oscillatory activity in the human brain is dominated by posterior alpha oscillations (8-14 Hz), which have been shown to be functionally relevant in a wide variety of cognitive tasks. Although posterior alpha oscillations are commonly considered a single oscillator anchored at an individual alpha frequency (IAF; ∼10 Hz), previous work suggests that IAF reflects a spatial mixture of different brain rhythms. In this study, we assess whether Independent Component Analysis (ICA) can disentangle functionally distinct posterior alpha rhythms in the context of visual short-term memory retention. Magnetoencephalography (MEG) was recorded in 33 subjects while performing a visual working memory task. Group analysis at sensor level suggested the existence of a single posterior alpha oscillator that increases in power and decreases in frequency during memory retention. Conversely, single-subject analysis of independent components revealed the existence of two dissociable alpha rhythms: one that increases in power during memory retention (Alpha1) and another one that decreases in power (Alpha2). Alpha1 and Alpha2 rhythms were differentially modulated by the presence of visual distractors (Alpha1 increased in power while Alpha2 decreased) and had an opposite relationship with accuracy (positive for Alpha1 and negative for Alpha2). In addition, Alpha1 rhythms showed a lower peak frequency, a narrower peak width, a greater relative peak amplitude and a more central source than Alpha2 rhythms. Together, our results demonstrate that modulations in posterior alpha oscillations during short-term memory retention reflect the dynamics of at least two distinct brain rhythms with different functions and spatiospectral characteristics.Significance statementAlpha oscillations are the most prominent feature of the human brain's electrical activity, and consist of rhythmic neuronal activity in posterior parts of the cortex. Alpha is usually considered a single brain rhythm that changes in power and frequency to support cognitive operations. We here show that posterior alpha entails at least two dissociable rhythms with distinct functions and characteristics. These findings could solve previous inconsistencies in the literature regarding the direction of task-related alpha power/frequency modulations and their relation to cognitive performance. In addition, the existence of two distinct posterior alpha rhythms could have important consequences for the design of neurostimulation protocols aimed at modulating alpha oscillations and subsequently cognition.

6.
Neuroimage ; 245: 118669, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34688899

RESUMO

Previous literature suggests that individuals with meditation training become less distracted during meditation practice. In this study, we assess whether putative differences in the subjective experience of meditation between meditators and non-meditators are reflected in EEG spectral modulations. For this purpose, we recorded electroencephalography (EEG) during rest and two breath focus meditations (with and without experience sampling) in a group of 29 adult participants with more than 3 years of meditation experience and a control group of 29 participants without any meditation experience. Experience sampling in one of the meditation conditions allowed us to disentangle periods of breath focus from mind wandering (i.e. moments of distraction driven by task-irrelevant thoughts) during meditation practice. Overall, meditators reported a greater level of focus and reduced mind wandering during meditation practice than controls. In line with these reports, EEG spectral modulations associated with meditation and mind wandering also differed significantly between meditators and controls. While meditators (but not controls) showed a significant decrease in individual alpha frequency / amplitude and a steeper 1/f slope during meditation relative to rest, controls (but not meditators) showed a relative increase in individual alpha amplitude during mind wandering relative to breath focus periods. Together, our results show that the subjective experience of meditation and mind wandering differs between meditators and novices and that this is reflected in oscillatory and non-oscillatory properties of EEG.


Assuntos
Atenção , Eletroencefalografia , Meditação , Adulto , Idoso , Mapeamento Encefálico , Avaliação Momentânea Ecológica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
Eur J Neurosci ; 53(6): 1855-1868, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33289167

RESUMO

Meditation practice entails moments of distraction dominated by self-generated thoughts (i.e. mind wandering). Initial studies assessing the neural correlates of mind wandering in the context of meditation practice have identified an important role of theta (4-8 Hz) and alpha (8-14 Hz) neural oscillations. In this study, we use a probe-caught experience sampling paradigm to assess spectral changes in the theta-alpha frequency range during mind wandering in the context of breath focus meditation. Electroencephalography (EEG) was measured in 25 novice meditation practitioners during a breath focus task in which they were repeatedly probed to report whether they were focusing on their breath or thinking about something else. Mind wandering episodes were associated with an increase in the amplitude and a decrease in the frequency of theta (4-8 Hz) oscillations. Conversely, alpha oscillations (8-14 Hz) were shown to decrease in amplitude and increase in frequency during mind wandering relative to breath focus. In addition, mind wandering episodes were shown to be accompanied by increased harmonicity and phase synchrony between alpha and theta rhythms. Because similar spectral changes in the theta-alpha frequency range have been reported during controlled cognitive processes involving memory and executive control, we speculate that mind wandering and controlled processes could share some neurocognitive mechanisms. From a translational perspective, this study indicates that oscillatory activity in the theta-alpha frequency range could form adequate parameters for developing EEG-neurofeedback protocols aimed at facilitating the detection of mind wandering during meditation practice.


Assuntos
Meditação , Atenção , Avaliação Momentânea Ecológica , Eletroencefalografia , Humanos , Ritmo Teta
8.
Sci Rep ; 10(1): 5419, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32214173

RESUMO

Neural activity is known to oscillate within discrete frequency bands and the synchronization between these rhythms is hypothesized to underlie information integration in the brain. Since strict synchronization is only possible for harmonic frequencies, a recent theory proposes that the interaction between different brain rhythms is facilitated by transient harmonic frequency arrangements. In this line, it has been recently shown that the transient occurrence of 2:1 harmonic cross-frequency relationships between alpha and theta rhythms (i.e. falpha ≈ 12 Hz; ftheta ≈ 6 Hz) is enhanced during effortful cognition. In this study, we tested whether achieving a state of 'mental emptiness' during meditation is accompanied by a relative decrease in the occurrence of 2:1 harmonic cross-frequency relationships between alpha and theta rhythms. Continuous EEG recordings (19 electrodes) were obtained from 43 highly experienced meditators during meditation practice, rest and an arithmetic task. We show that the occurrence of transient alpha:theta 2:1 harmonic relationships increased linearly from a meditative to an active cognitive processing state (i.e. meditation < rest < arithmetic task). It is argued that transient EEG cross-frequency arrangements that prevent alpha:theta cross-frequency coupling could facilitate the experience of 'mental emptiness' by avoiding the interaction between the memory and executive components of cognition.


Assuntos
Ritmo alfa/fisiologia , Conscientização/fisiologia , Cognição/fisiologia , Meditação/psicologia , Descanso/fisiologia , Ritmo Teta/fisiologia , Adulto , Encéfalo , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Matemática/métodos , Pessoa de Meia-Idade
9.
J Neurosci ; 39(32): 6291-6298, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31175211

RESUMO

The synchronization between neural oscillations at different frequencies has been proposed as a core mechanism for the coordination and integration of neural systems at different spatiotemporal scales. Because neural oscillations of different frequencies can only fully synchronize when their "peak" frequencies form harmonic relationships (e.g., f2 = f1/2), the present study explored whether the transient occurrence of harmonic cross-frequency relationship between task-relevant rhythms underlies efficient cognitive processing. Continuous EEG recordings (51 human participants; 14 males) were obtained during an arithmetic task, rest and breath focus. In two separate experiments, we consistently show that the proportion of epochs displaying a 2:1 harmonic relationship between alpha (8-14 Hz) and theta (4-8 Hz) peak frequencies (i.e., alphapeak ≈ 10.6 Hz; thetapeak ≈ 5.3 Hz), was significantly higher when cognitive demands increased. In addition, a higher incidence of 2:1 harmonic cross-frequency relationships was significantly associated with increased alpha-theta phase synchrony and improved arithmetic task performance, thereby underlining the functional relevance of this cross-frequency configuration. Notably, opposite dynamics were identified for a specific range of "nonharmonic" alpha-theta cross-frequency relationships (i.e., alphapeak/thetapeak = 1.1-1.6), which showed a higher incidence during rest compared with the arithmetic task. The observation that alpha and theta rhythms shifted into harmonic versus nonharmonic cross-frequency relationships depending on (cognitive) task demands is in line with the notion that the neural frequency architecture entails optimal frequency arrangements to facilitate cross-frequency "coupling" and "decoupling".SIGNIFICANCE STATEMENT Neural activity is known to oscillate within discrete frequency bands and the interplay between these brain rhythms is hypothesized to underlie cognitive functions. A recent theory posits that shifts in the peak frequencies of oscillatory rhythms form the principal mechanism by which cross-frequency coupling and decoupling is implemented in the brain. In line with this notion, we show that the occurrence of a cross-frequency arrangement that mathematically enables coupling between alpha and theta rhythms is more prominent during active cognitive processing (compared with rest and non-cognitively demanding tasks) and is associated with improved cognitive performance. Together, our results open new vistas for future research on cross-frequency dynamics in the brain and their functional role in cognitive processing.


Assuntos
Ritmo alfa/fisiologia , Relógios Biológicos/fisiologia , Cognição/fisiologia , Ritmo Teta/fisiologia , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Matemática , Memória de Curto Prazo/fisiologia , Desempenho Psicomotor/fisiologia , Respiração , Descanso/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...