Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35805658

RESUMO

Gamification consists of the use of ludic elements in non-ludic contexts. It is becoming an educational trend, due to its ability to work on curriculum skills in a fun and motivating way. This article exposes a program of gamified university practices, "Super-Profes", for the subject of Developmental Disorders. To gain an understanding of student impressions about this methodology, a qualitative study was carried out, based on a survey with open questions, and, subsequently, analyzed with the Atlas.ti 8.4 program. In total, 63 s-year students taking the Early Childhood Education degree participated. Two main categories emerged from the study: gamification as a fun and motivating educational experience, and knowledge and skills acquired after studying a gamified subject. The research concluded with an assessment of educational gamification as a motivating and effective methodology for the acquisition of content and skills necessary for future teaching.


Assuntos
Capacitação de Professores , Pré-Escolar , Currículo , Gamificação , Humanos , Pesquisa Qualitativa , Estudantes
2.
Artigo em Inglês | MEDLINE | ID: mdl-33802185

RESUMO

The pandemic caused by COVID-19 has generated a transformation in students' competences and university education, especially in the use of digital tools. This study aims to analyze the use of digital tools and social networks of university students during the COVID-19 pandemic. For the collection of information, a validated Likert questionnaire (10-point scale) was adopted. The instrument consisted of a total of 66 items comprising a total of seven dimensions. The sample contained 581 students pursuing degrees in Childhood Education and Primary Education. The analysis of the available information was carried out in two different stages. First, we started by performing an exploratory factorial analysis (EFA) to determine the underlying structure of the Digital Competence of Higher Education Students (DCHES) scale factor. In the second phase, we used SEM (structural equation modeling), a statistical approach to test the relationships between observed and latent variables. More specifically, we estimated a multiple indicators multiple causes (MIMIC) model. The results showed the importance of two of the considered covariates in explaining the variability of the different dimensions of the scale analyzed (DCHES) considering the use of social networks and digital tools of university students. In this sense, both the degree to which virtual tools are used to develop teamwork and the degree of use of YouTube when communicating most fully explained the level of digital skills among the university students studied.


Assuntos
COVID-19 , Pandemias , Criança , Humanos , SARS-CoV-2 , Rede Social , Estudantes , Universidades
3.
J Neurosci ; 40(13): 2663-2679, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32054677

RESUMO

Thalamocortical posterior nucleus (Po) axons innervating the vibrissal somatosensory (S1) and motor (MC) cortices are key links in the brain neuronal network that allows rodents to explore the environment whisking with their motile snout vibrissae. Here, using fine-scale high-end 3D electron microscopy, we demonstrate in adult male C57BL/6 wild-type mice marked differences between MC versus S1 Po synapses in (1) bouton and active zone size, (2) neurotransmitter vesicle pool size, (3) distribution of mitochondria around synapses, and (4) proportion of synapses established on dendritic spines and dendritic shafts. These differences are as large, or even more pronounced, than those between Po and ventro-posterior thalamic nucleus synapses in S1. Moreover, using single-axon transfection labeling, we demonstrate that the above differences actually occur on the MC versus the S1 branches of individual Po cell axons that innervate both areas. Along with recently-discovered divergences in efficacy and plasticity, the synaptic structure differences reported here thus reveal a new subcellular level of complexity. This is a finding that upends current models of thalamocortical circuitry, and that might as well illuminate the functional logic of other branched projection axon systems.SIGNIFICANCE STATEMENT Many long-distance brain connections depend on neurons whose branched axons target separate regions. Using 3D electron microscopy and single-cell transfection, we investigated the mouse Posterior thalamic nucleus (Po) cell axons that simultaneously innervate motor and sensory areas of the cerebral cortex involved in whisker movement control. We demonstrate significant differences in the size of the boutons made in each area by individual Po axons, as well as in functionally-relevant parameters in the composition of their synapses. In addition, we found similarly large differences between the synapses of Po versus ventral posteromedial thalamic nucleus axons in the whisker sensory cortex. Area-specific synapse structure in individual axons implies a new, unsuspected level of complexity in long-distance brain connections.


Assuntos
Axônios/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Sinapses/fisiologia , Tálamo/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Vibrissas/fisiologia
4.
Brain Struct Funct ; 224(4): 1627-1645, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30919051

RESUMO

Rodents extract information about nearby objects from the movement of their whiskers through dynamic computations that are carried out by a network of forebrain structures that includes the thalamus and the primary sensory (S1BF) and motor (M1wk) whisker cortices. The posterior nucleus (Po), a higher order thalamic nucleus, is a key hub of this network, receiving cortical and brainstem sensory inputs and innervating both motor and sensory whisker-related cortical areas. In a recent study in rats, we showed that Po inputs differently impact sensory processing in S1BF and M1wk. Here, in C57BL/6 mice, we measured Po synaptic bouton layer distribution and size, compared cortical unit response latencies to "in vivo" Po activation, and pharmacologically examined the glutamatergic receptor mechanisms involved. We found that, in S1BF, a large majority (56%) of Po axon varicosities are located in layer (L)5a and only 12% in L2-L4, whereas in M1wk this proportion is inverted to 18% and 55%, respectively. Light and electron microscopic measurements showed that Po synaptic boutons in M1wk layers 3-4 are significantly larger (~ 50%) than those in S1BF L5a. Electrical Po stimulation elicits different area-specific response patterns. In S1BF, responses show weak or no facilitation, and involve both ionotropic and metabotropic glutamate receptors, whereas in M1wk, unit responses exhibit facilitation to repetitive stimulation and involve ionotropic NMDA glutamate receptors. Because of the different laminar distribution of axon terminals, synaptic bouton size and receptor mechanisms, the impact of Po signals on M1wk and S1BF, although simultaneous, is likely to be markedly different.


Assuntos
Axônios/fisiologia , Axônios/ultraestrutura , Córtex Motor/fisiologia , Núcleos Posteriores do Tálamo/fisiologia , Córtex Somatossensorial/fisiologia , Sinapses/fisiologia , Sinapses/ultraestrutura , Animais , Estimulação Elétrica , Masculino , Camundongos Endogâmicos C57BL , Córtex Motor/ultraestrutura , Vias Neurais/fisiologia , Vias Neurais/ultraestrutura , Núcleos Posteriores do Tálamo/ultraestrutura , Receptores de Glutamato Metabotrópico/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Córtex Somatossensorial/ultraestrutura , Vibrissas/fisiologia
5.
Cereb Cortex ; 28(9): 3159-3175, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28968773

RESUMO

Thalamocortical synapses from "lemniscal" neurons of the dorsomedial portion of the rodent ventral posteromedial nucleus (VPMdm) are able to induce with remarkable efficacy, despite their relative low numbers, the firing of primary somatosensory cortex (S1) layer 4 (L4) neurons. To which extent this high efficacy depends on structural synaptic features remains unclear. Using both serial transmission (TEM) and focused ion beam milling scanning electron microscopy (FIB/SEM), we 3D-reconstructed and quantitatively analyzed anterogradely labeled VPMdm axons in L4 of adult mouse S1. All VPMdm synapses are asymmetric. Virtually all are established by axonal boutons, 53% of which contact multiple (2-4) elements (overall synapse/bouton ratio = 1.6). Most boutons are large (mean 0.47 µm3), and contain 1-3 mitochondria. Vesicle pools and postsynaptic density (PSD) surface areas are large compared to others in rodent cortex. Most PSDs are complex. Most synapses (83%) are established on dendritic spine heads. Furthermore, 15% of the postsynaptic spines receive a second, symmetric synapse. In addition, 13% of the spine heads have a large protrusion inserted into a membrane pouch of the VPMdm bouton. The unusual combination of structural features in VPMdm synapses is likely to contribute significantly to the high efficacy, strength, and plasticity of these thalamocortical synapses.


Assuntos
Córtex Somatossensorial/ultraestrutura , Sinapses/ultraestrutura , Animais , Imageamento Tridimensional/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleos Ventrais do Tálamo/ultraestrutura
6.
Front Neuroanat ; 10: 27, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27047347

RESUMO

We report a highly efficient, simple, and non-infective method for labeling individual long-range projection neurons (LRPNs) in a specific location with enough sparseness and intensity to allow complete and unambiguous reconstructions of their entire axonal tree. The method is based on the "in vivo" transfection of a large RNA construct that drives the massive expression of green fluorescent protein. The method combines two components: injection of a small volume of a hyperosmolar NaCl solution containing the Pal-eGFP-Sindbis RNA construct (Furuta et al., 2001), followed by the application of high-frequency electric current pulses through the micropipette tip. We show that, although each component alone increases transfection efficacy, compared to simple volume injections of standard RNA solution, the highest efficacy (85.7%) is achieved by the combination of both components. In contrast with the infective viral Sindbis vector, RNA transfection occurs exclusively at the position of the injection micropipette tip. This method simplifies consistently labeling one or a few isolated neurons per brain, a strategy that allows unambiguously resolving and quantifying the brain-wide and often multi-branched monosynaptic circuits created by LRPNs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...