Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Assunto principal
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 2547, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538071

RESUMO

When charged particles in periodic lattices are subjected to a constant electric field, they respond by oscillating. Here we demonstrate that the magnetic analogue of these Bloch oscillations are realised in a ferromagnetic easy axis chain. In this case, the "particles" undergoing oscillatory motion in the presence of a magnetic field are domain walls. Inelastic neutron scattering reveals three distinct components of the low energy spin-dynamics including a signature Bloch oscillation mode. Using parameter-free theoretical calculations, we are able to account for all features in the excitation spectrum, thus providing detailed insights into the complex dynamics in spin-anisotropic chains.

2.
Nat Mater ; 20(12): 1650-1656, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34413490

RESUMO

Emergent relativistic quasiparticles in Weyl semimetals are the source of exotic electronic properties such as surface Fermi arcs, the anomalous Hall effect and negative magnetoresistance, all observed in real materials. Whereas these phenomena highlight the effect of Weyl fermions on the electronic transport properties, less is known about what collective phenomena they may support. Here, we report a Weyl semimetal, NdAlSi, that offers an example. Using neutron diffraction, we found a long-wavelength helical magnetic order in NdAlSi, the periodicity of which is linked to the nesting vector between two topologically non-trivial Fermi pockets, which we characterize using density functional theory and quantum oscillation measurements. We further show the chiral transverse component of the spin structure is promoted by bond-oriented Dzyaloshinskii-Moriya interactions associated with Weyl exchange processes. Our work provides a rare example of Weyl fermions driving collective magnetism.

3.
Sci Adv ; 7(21)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34138738

RESUMO

The observation of quantum criticality in diverse classes of strongly correlated electron systems has been instrumental in establishing ordering principles, discovering new phases, and identifying the relevant degrees of freedom and interactions. At focus so far have been insulators and metals. Semimetals, which are of great current interest as candidate phases with nontrivial topology, are much less explored in experiments. Here, we study the Kondo semimetal CeRu4Sn6 by magnetic susceptibility, specific heat, and inelastic neutron scattering experiments. The power-law divergence of the magnetic Grünesien ratio reveals that, unexpectedly, this compound is quantum critical without tuning. The dynamical energy over temperature scaling in the neutron response throughout the Brillouin zone and the temperature dependence of the static uniform susceptibility, indicate that temperature is the only energy scale in the criticality. Such behavior, which has been associated with Kondo destruction quantum criticality in metallic systems, could be generic in the semimetal setting.

4.
Nat Commun ; 11(1): 2348, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393775

RESUMO

The quantum spin liquid is a highly entangled magnetic state characterized by the absence of static magnetism in its ground state. Instead, the spins fluctuate in a highly correlated way down to the lowest temperatures. Quantum spin liquids are very rare and are confined to a few specific cases where the interactions between the magnetic ions cannot be simultaneously satisfied (known as frustration). Lattices with magnetic ions in triangular or tetrahedral arrangements, which interact via isotropic antiferromagnetic interactions, can generate such a frustration. Three-dimensional isotropic spin liquids have mostly been sought in materials where the magnetic ions form pyrochlore or hyperkagome lattices. Here we present a three-dimensional lattice called the hyper-hyperkagome that enables spin liquid behaviour and manifests in the compound PbCuTe2O6. Using a combination of experiment and theory, we show that this system exhibits signs of being a quantum spin liquid with no detectable static magnetism together with the presence of diffuse continua in the magnetic spectrum suggestive of fractional spinon excitations.

5.
Adv Sci (Weinh) ; 5(5): 1700978, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29876219

RESUMO

Quantum magnetic properties in a geometrically frustrated lattice of spin-1/2 magnet, such as quantum spin liquid or solid and the associated spin fractionalization, are considered key in developing a new phase of matter. The feasibility of observing the quantum magnetic properties, usually found in geometrically frustrated lattice of spin-1/2 magnet, in a perovskite material with controlled disorder is demonstrated. It is found that the controlled chemical disorder, due to the chemical substitution of Ru ions by Co-ions, in a simple perovskite CaRuO3 creates a random prototype configuration of artificial spin-1/2 that forms dimer pairs between the nearest and further away ions. The localization of the Co impurity in the Ru matrix is analyzed using the Anderson localization formulation. The dimers of artificial spin-1/2, due to the localization of Co impurities, exhibit singlet-to-triplet excitation at low temperature without any ordered spin correlation. The localized gapped excitation evolves into a gapless quasi-continuum as dimer pairs break and create freely fluctuating fractionalized spins at high temperature. Together, these properties hint at a new quantum magnetic state with strong resemblance to the resonance valence bond system.

6.
Phys Rev Lett ; 120(9): 097201, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29547324

RESUMO

We report the discovery of a field driven transition from a single-q to multi-q spin density wave (SDW) in the tetragonal heavy fermion compound CeAuSb_{2}. Polarized along c, the sinusoidal SDW amplitude is 1.8(2)µ_{B}/Ce for T≪T_{N}=6.25(10) K with a wave vector q_{1}=(η,η,1/2) [η=0.136(2)]. For H∥c, harmonics appearing at 2q_{1} evidence a striped magnetic texture below µ_{∘}H_{1}=2.78(1) T. Above H_{1}, these are replaced by coupled harmonics at q_{1}+q_{2}=(2η,0,0)+c^{*} until µ_{∘}H_{2}=5.42(5) T, where satellites vanish and magnetization nonlinearly approaches saturation at 1.64(2)µ_{B}/Ce for µ_{∘}H≈7 T.

7.
Proc Natl Acad Sci U S A ; 111(5): 1754-9, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24449912

RESUMO

PbZr(1-x)Ti(x)O3 (PZT) and Pb(Mg1/3Nb2/3)(1-x)Ti(x)O3 (PMN-xPT) are complex lead-oxide perovskites that display exceptional piezoelectric properties for pseudorhombohedral compositions near a tetragonal phase boundary. In PZT these compositions are ferroelectrics, but in PMN-xPT they are relaxors because the dielectric permittivity is frequency dependent and exhibits non-Arrhenius behavior. We show that the nanoscale structure unique to PMN-xPT and other lead-oxide perovskite relaxors is absent in PZT and correlates with a greater than 100% enhancement of the longitudinal piezoelectric coefficient in PMN-xPT relative to that in PZT. By comparing dielectric, structural, lattice dynamical, and piezoelectric measurements on PZT and PMN-xPT, two nearly identical compounds that represent weak and strong random electric field limits, we show that quenched (static) random fields establish the relaxor phase and identify the order parameter.

8.
Nature ; 492(7429): 406-10, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23257883

RESUMO

The experimental realization of quantum spin liquids is a long-sought goal in physics, as they represent new states of matter. Quantum spin liquids cannot be described by the broken symmetries associated with conventional ground states. In fact, the interacting magnetic moments in these systems do not order, but are highly entangled with one another over long ranges. Spin liquids have a prominent role in theories describing high-transition-temperature superconductors, and the topological properties of these states may have applications in quantum information. A key feature of spin liquids is that they support exotic spin excitations carrying fractional quantum numbers. However, detailed measurements of these 'fractionalized excitations' have been lacking. Here we report neutron scattering measurements on single-crystal samples of the spin-1/2 kagome-lattice antiferromagnet ZnCu(3)(OD)(6)Cl(2) (also called herbertsmithite), which provide striking evidence for this characteristic feature of spin liquids. At low temperatures, we find that the spin excitations form a continuum, in contrast to the conventional spin waves expected in ordered antiferromagnets. The observation of such a continuum is noteworthy because, so far, this signature of fractional spin excitations has been observed only in one-dimensional systems. The results also serve as a hallmark of the quantum spin-liquid state in herbertsmithite.

9.
Phys Rev Lett ; 106(3): 037201, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21405289

RESUMO

Magnetism in the orthorhombic metal CaFe(4)As(3) was examined through neutron diffraction for powder and single crystalline samples. Incommensurate [q(m) ≈ (0.37-0.39) × b*] and predominantly longitudinally (|| b) modulated order develops through a 2nd order phase transition at TN = 89.63(6) K with a 3D Heisenberg-like critical exponent ß = 0.365(6). A 1st order transition at T2 = 25.6(9) K is associated with the development of a transverse component, locking q(m) to 0.375(2)b*, and increasing the moments from 2.1(1) to 2.2(3) µ B for Fe2+ and from 1.3(3) to 2.4(4) µB for Fe+. The ab initio Fermi surface is consistent with a nesting instability in cross-linked FeAs strips.

10.
Sci Rep ; 1: 115, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22355632

RESUMO

We report inelastic neutron scattering experiments on single crystals of superconducting Ba(0.67)K(0.33)Fe(2)As(2) (T(c) = 38 K). In addition to confirming the resonance previously found in powder samples, we find that spin excitations in the normal state form longitudinally elongated ellipses along the Q(AFM) direction in momentum space, consistent with density functional theory predictions. On cooling below T(c), while the resonance preserves its momentum anisotropy as expected, spin excitations at energies below the resonance become essentially isotropic in the in-plane momentum space and dramatically increase their correlation length. These results suggest that the superconducting gap structures in Ba(0.67)Ka(0.33)Fe(2)As(2) are more complicated than those suggested from angle resolved photoemission experiments.

11.
Invest. med. int ; 16(4): 195-9, feb. 1990. tab
Artigo em Espanhol | LILACS | ID: lil-95534

RESUMO

Se realizó un estudio multicéntrico abierto no comparaivo en el que participaron 18 reconocidos urólogos de la República Mexicana, de las ciudades de Monterey, Guadalajara, Toluca, León y el Distrito Federal. Se valoró la eficacia antimicrobiana y la tolerancia de pefloxacina en dosis única de dos comprimidos de 400 mg. en el tatamiento de uretrocistitits infecciosa, previa revisión del protocolo de investigación clínica por parte de los investigadores participantes con la finalidad de unificar criterior para su valoración posterior


Assuntos
Humanos , Adolescente , Adulto , Pessoa de Meia-Idade , Masculino , Feminino , Pefloxacina/administração & dosagem , Pefloxacina/uso terapêutico , Cistite/microbiologia , Cistite/fisiopatologia , Cistite/terapia , Uretra/efeitos dos fármacos , Uretra/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...