Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38202558

RESUMO

Graphitic carbon nitride (g-C3N4) is a metal-free photocatalyst used for visible-driven hydrogen production, CO2 reduction, and organic pollutant degradation. In addition to the most attractive feature of visible photoactivity, its other benefits include thermal and photochemical stability, cost-effectiveness, and simple and easy-scale-up synthesis. However, its performance is still limited due to its low absorption at longer wavelengths in the visible range, and high charge recombination. In addition, the exfoliated nanosheets easily aggregate, causing the reduction in specific surface area, and thus its photoactivity. Herein, we propose the use of ultra-thin porous g-C3N4 nanosheets to overcome these limitations and improve its photocatalytic performance. Through the optimization of a novel multi-step synthetic protocol, based on an initial thermal treatment, the use of nitric acid (HNO3), and an ultrasonication step, we were able to obtain very thin and well-tuned material that yielded exceptional photodegradation performance of methyl orange (MO) under visible light irradiation, without the need for any co-catalyst. About 96% of MO was degraded in as short as 30 min, achieving a normalized apparent reaction rate constant (k) of 1.1 × 10-2 min-1mg-1. This represents the highest k value ever reported using C3N4-based photocatalysts for MO degradation, based on our thorough literature search. Ultrasonication in acid not only prevents agglomeration of g-C3N4 nanosheets but also tunes pore size distribution and plays a key role in this achievement. We also studied their performance in a photocatalytic hydrogen evolution reaction (HER), achieving a production of 1842 µmol h-1 g-1. Through a profound analysis of all the samples' structure, morphology, and optical properties, we provide physical insight into the improved performance of our optimized porous g-C3N4 sample for both photocatalytic reactions. This research may serve as a guide for improving the photocatalytic activity of porous two-dimensional (2D) semiconductors under visible light irradiation.

2.
ACS Nanosci Au ; 3(2): 103-129, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37096232

RESUMO

Sonophotocatalysis is described as a combination of two individual processes of photocatalysis and sonocatalysis. It has proven to be highly promising in degrading dissolved contaminants in wastewaters as well as bacteria disinfection applications. It eliminates some of the main disadvantages observed in each individual technique such as high costs, sluggish activity, and prolonged reaction times. The review has accomplished a critical analysis of sonophotocatalytic reaction mechanisms and the effect of the nanostructured catalyst and process modification techniques on the sonophotocatalytic performance. The synergistic effect between the mentioned processes, reactor design, and the electrical energy consumption has been discussed due to their importance when implementing this novel technology in practical applications, such as real industrial or municipal wastewater treatment plants. The utilization of sonophotocatalysis in disinfection and inactivation of bacteria has also been reviewed. In addition, we further suggest improvements to promote this technology from the lab-scale to large-scale applications. We hope this up-to-date review will advance future research in this field and push this technology toward widespread adoption and commercialization.

3.
ACS Appl Mater Interfaces ; 12(29): 32712-32718, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32585085

RESUMO

Four hole transport materials (HTMs) based on a benzothiadiazole (BT) central core have been synthesized and successfully employed in triple-cation mixed-halide perovskite solar cells (PSCs), reaching 18.05% solar to energy conversion efficiency. The synthesis of these HTMs follows the push-and-pull approach to modulate the HOMO energy level by combining the BT group as an electron acceptor and diphenyl- and triphenyl-amines as electron donors. Here we show that despite adjusting the HOMO energy level to that of the perovskite is a believed requisite to achieve efficient interfacial hole transfer, additional factors must be taken into account to design novel and efficient HTMs, such as a high hole mobility, solubility in organic solvents, and thermal stability.

4.
Angew Chem Int Ed Engl ; 59(13): 5303-5307, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-31967379

RESUMO

Three hole transport materials (HTMs) based on a substituted triphenylamine moiety have been synthesized and successfully employed in triple-cation mixed-halide PSCs, reaching efficiencies of 19.4 %. The efficiencies, comparable to those obtained using spiro-OMeTAD, point them out as promising candidates for easily attainable and cost-effective alternatives for PSCs, given their facile synthesis from commercially available materials. Interestingly, although all these HTMs show similar chemical and physical properties, they provide different carrier recombination kinetics. Our results demonstrate that is feasible through the molecular design of the HTM to minimize carrier losses and, thus, increase the solar cell efficiencies.

5.
Chemphyschem ; 20(20): 2702-2711, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30957930

RESUMO

Truxene derivatives, due to their molecular structure and properties, are good candidates for the passivation of defects when deposited onto hybrid lead halide perovskite thin films. Moreover, their semiconductor characteristics can be tailored through the modification of their chemical structure, which allows-upon light irradiation- the interfacial charge transfer between the perovskite film and the truxene molecules. In this work, we analysed the use of the molecules as surface passivation agents and their use in complete functional solar cells. We observed that these molecules reduce the non-radiative carrier recombination dynamics in the perovskite thin film through the supramolecular complex formation between the Truxene molecule and the Pb2+ defects at the perovskite surface. Interestingly, this supramolecular complexation neither affect the carrier recombination kinetics nor the carriers collection but induced noticeable hysteresis on the photocurrent vs voltage curves of the solar cells under 1 sun illumination.

6.
Acc Chem Res ; 51(4): 869-880, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29543439

RESUMO

Over hundreds of new organic semiconductor molecules have been synthesized as hole transport materials (HTMs) for perovskite solar cells. However, to date, the well-known N2, N2, N2', N2', N7, N7, N7', octakis-(4-methoxyphenyl)-9,9-spirobi-[9,9'-spirobi[9 H-fluorene]-2,2',7,7'-tetramine (spiro-OMeTAD) is still the best choice for the best perovskite device performance. Nevertheless, there is a consensus that spiro-OMeTAD by itself is not stable enough for long-term stable devices, and its market price makes its use in large-scale production costly. Novel synthetic routes for new HTMs have to be sought that can be carried out in fewer synthetic steps and can be easily scaled up for commercial purposes. On the one hand, synthetic chemists have taken, as a first approach, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of the spiro-OMeTAD molecule as a reference to synthesize molecules with similar energy levels, although these HOMO and LUMO energy levels often have been measured indirectly in solution using cyclic voltammetry. On the other hand, the "spiro" chemical core has also been studied as a structural motif for novel HTMs. However, only a few molecules incorporated as HTMs in complete functional perovskite solar cells have been capable of matching the performance of the best-performing perovskite solar cells made using spiro-OMeTAD. In this Account, we describe the advances in the synthesis of HTMs that have been tested in perovskite solar cells. The comparison of solar cell efficiencies is of course very challenging because the solar cell preparation conditions may differ from laboratory to laboratory. To extract valuable information about the HTM molecular structure-device function relationship, we describe those examples that always have used spiro-OMeTAD as a control device and have always used identical experimental conditions (e.g., the use of the same chemical dopant for the HTM or the lack of it). The pioneering work was focused on well-understood organic semiconductor moieties such as arylamine, carbazole, and thiophene. Those chemical structures have been largely employed and studied as HTMs, for instance, in organic light-emitting devices. Interestingly, most research groups have reported the hole mobility values for their novel HTMs. However, only a few examples have been found that have measured the HOMO and LUMO energy levels using advanced spectroscopic techniques to determine these reference energy values directly. Moreover, it has been shown that those molecules, upon interacting with the perovskite layer, often have different HOMO and LUMO energies than the values estimated indirectly using solution-based electrochemical methods. Last but not least, porphyrins and phthalocyanines have also been synthesized as potential HTMs for perovskite solar cells. Their optical and physical properties, such as high absorption and good energy transfer capabilities, open new possibilities for HTMs in perovskite solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...