Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(11): e2304360121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38457517

RESUMO

The interplay of charge, spin, lattice, and orbital degrees of freedom in correlated materials often leads to rich and exotic properties. Recent studies have brought new perspectives to bosonic collective excitations in correlated materials. For example, inelastic neutron scattering experiments revealed non-trivial band topology for magnons and spin-orbit excitons (SOEs) in a quantum magnet CoTiO3 (CTO). Here, we report phonon properties resulting from a combination of strong spin-orbit coupling, large crystal field splitting, and trigonal distortion in CTO. Specifically, the interaction between SOEs and phonons endows chirality to two [Formula: see text] phonon modes and leads to large phonon magnetic moments observed in magneto-Raman spectra. The remarkably strong magneto-phononic effect originates from the hybridization of SOEs and phonons due to their close energy proximity. While chiral phonons have been associated with electronic topology in some materials, our work suggests opportunities may arise by exploring chiral phonons coupled to topological bosons.

2.
Sci Adv ; 9(50): eadj4074, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100589

RESUMO

The recently demonstrated chiral modes of lattice motion carry angular momentum and therefore directly couple to magnetic fields. Notably, their magnetic moments are predicted to be strongly influenced by electronic contributions. Here, we have studied the magnetic response of transverse optical phonons in a set of Pb1-xSnxTe films, which is a topological crystalline insulator for x > 0.32 and has a ferroelectric transition at an x-dependent critical temperature. Polarization-dependent terahertz magnetospectroscopy measurements revealed Zeeman splittings and diamagnetic shifts, demonstrating a large phonon magnetic moment. Films in the topological phase exhibited phonon magnetic moment values that were larger than those in the topologically trivial samples by two orders of magnitude. Furthermore, the sign of the effective phonon g-factor was opposite in the two phases, a signature of the topological transition according to our model. These results strongly indicate the existence of interplay between the magnetic properties of chiral phonons and the topology of the electronic band structure.

3.
Nat Commun ; 13(1): 2527, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534477

RESUMO

Electron band topology is combined with intrinsic magnetic orders in MnBi2Te4, leading to novel quantum phases. Here we investigate collective spin excitations (i.e. magnons) and spin fluctuations in atomically thin MnBi2Te4 flakes using Raman spectroscopy. In a two-septuple layer with non-trivial topology, magnon characteristics evolve as an external magnetic field tunes the ground state through three ordered phases: antiferromagnet, canted antiferromagnet, and ferromagnet. The Raman selection rules are determined by both the crystal symmetry and magnetic order while the magnon energy is determined by different interaction terms. Using non-interacting spin-wave theory, we extract the spin-wave gap at zero magnetic field, an anisotropy energy, and interlayer exchange in bilayers. We also find magnetic fluctuations increase with reduced thickness, which may contribute to a less robust magnetic order in single layers.

4.
J Phys Chem Lett ; 13(18): 4152-4158, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35507411

RESUMO

We theoretically study the effect of low-frequency light pulses in resonance with phonons in the topological and magnetically ordered two-septuple layer (2-SL) MnBi2Te4 (MBT) and MnSb2Te4 (MST). These materials share symmetry properties and an antiferromagnetic ground state in pristine form but present different magnetic exchange interactions. In both materials, shear and breathing Raman phonons can be excited via nonlinear interactions with photoexcited infrared phonons using intense laser pulses that can be attained in the current experimental setups. The light-induced transient lattice distortions lead to a change in the sign of the effective interlayer exchange interaction and magnetic order accompanied by a topological band transition. Furthermore, we show that moderate antisite disorder, typically present in MBT and MST samples, can facilitate such an effect. Therefore, our work establishes 2-SL MBT and MST as candidate platforms for achieving non-equilibrium magneto-topological phase transitions.

5.
Phys Rev Lett ; 128(7): 075901, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35244438

RESUMO

PbTe crystals have a soft transverse optical phonon mode in the terahertz frequency range, which is known to efficiently decay into heat-carrying acoustic phonons, resulting in anomalously low thermal conductivity. Here, we studied this phonon via polarization-dependent terahertz spectroscopy. We observed softening of this mode with decreasing temperature, indicative of incipient ferroelectricity, which we explain through a model including strong anharmonicity with a quartic displacement term. In magnetic fields up to 25 T, the phonon mode splits into two modes with opposite handedness, exhibiting circular dichroism. Their frequencies display Zeeman splitting together with an overall diamagnetic shift with increasing magnetic field. Using a group-theoretical approach, we demonstrate that these observations are the result of magnetic field-induced morphic changes in the crystal symmetries through the Lorentz force exerted on the lattice ions. Thus, our Letter reveals a novel process of controlling phonon properties in a soft ionic lattice by a strong magnetic field.

6.
Nano Lett ; 21(14): 6139-6145, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34252281

RESUMO

MnBi2Te4 represents a new class of magnetic topological insulators in which novel quantum phases emerge at temperatures higher than those found in magnetically doped thin films. Here, we investigate how couplings between electron, spin, and lattice are manifested in the phonon spectra of few-septuple-layer thick MnBi2Te4. After categorizing phonon modes by their symmetries, we study the systematic changes in frequency, line width, and line shape of a spectrally isolated A1g mode. The electron-phonon coupling increases in thinner flakes as manifested in a broader phonon line width, which is likely due to changes of the electron density of states. In 4- and 5-septuple thick samples, the onset of magnetic order below the Néel temperature is concurrent with a transition to an insulating state. We observe signatures of a reduced electron-phonon scattering across this transition as reflected in the reduced Fano parameter. Finally, spin-lattice coupling is measured and modeled from temperature-dependent phonon frequency.

7.
Proc Natl Acad Sci U S A ; 113(24): 6623-8, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27302949

RESUMO

One-atom-thick crystalline layers and their vertical heterostructures carry the promise of designer electronic materials that are unattainable by standard growth techniques. To realize their potential it is necessary to isolate them from environmental disturbances, in particular those introduced by the substrate. However, finding and characterizing suitable substrates, and minimizing the random potential fluctuations they introduce, has been a persistent challenge in this emerging field. Here we show that Landau-level (LL) spectroscopy offers the unique capability to quantify both the reduction of the quasiparticles' lifetime and the long-range inhomogeneity due to random potential fluctuations. Harnessing this technique together with direct scanning tunneling microscopy and numerical simulations we demonstrate that the insertion of a graphene buffer layer with a large twist angle is a very effective method to shield a 2D system from substrate interference that has the additional desirable property of preserving the electronic structure of the system under study. We further show that owing to its remarkable nonlinear screening capability a single graphene buffer layer provides better shielding than either increasing the distance to the substrate or doubling the carrier density and reduces the amplitude of the potential fluctuations in graphene to values even lower than the ones in AB-stacked bilayer graphene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...