Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Q J R Meteorol Soc ; 145(725): 3846-3862, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31894163

RESUMO

Recent studies have suggested that Arctic teleconnections affect the weather of the midlatitudes on time-scales relevant for medium-range weather forecasting. In this study, we use several numerical experimentation approaches with a state-of-the-art global operational numerical weather prediction system to investigate this idea further. Focusing on boreal winter, we investigate whether the influence of the Arctic on midlatitude weather, and the impact of the current Arctic observing system on the skill of medium-range weather forecasts in the midlatitudes is more pronounced in certain flow regimes. Using so-called Observing System Experiments, we demonstrate that removing in situ or satellite observations from the data assimilation system, used to create the initial conditions for the forecasts, deteriorates midlatitude synoptic forecast skill in the medium-range, particularly over northern Asia. This deterioration is largest during Scandinavian Blocking episodes, during which: (a) error growth is enhanced in the European-Arctic, as a result of increased baroclinicity in the region, and (b) high-amplitude planetary waves allow errors to propagate from the Arctic into midlatitudes. The important role played by Scandinavian Blocking, in modulating the influence of the Arctic on midlatitudes, is also corroborated in relaxation experiments, and through a diagnostic analysis of the ERA5 reanalysis and reforecasts.

2.
Opt Lett ; 42(19): 3745-3748, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957117

RESUMO

We design and experimentally demonstrate a highly integrated heterodyne optical phase-locked loop (OPLL) consisting of an InP-based coherent photonic receiver, high-speed feedback electronics, and an RF synthesizer. Such coherent photonic integrated circuits contain two widely tunable lasers, semiconductor optical amplifiers, phase modulators, and a pair of balanced photodetectors. Offset phase-locking of the two lasers is achieved by applying an RF signal to an on-chip optical phase modulator following one of the lasers and locking the other one to a resulting optical sideband. Offset locking frequency range >16 GHz is achieved for such a highly sensitive OPLL system which can employ up to the third-order-harmonic optical sidebands for locking. Furthermore, the rms phase error between the two lasers is measured to be 8°.

3.
Opt Express ; 25(2): 681-695, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-28157957

RESUMO

An integrated heterodyne optical phase-locked loop was designed and demonstrated with an indium phosphide based photonic integrated circuit and commercial off-the-shelf electronic components. As an input reference, a stable microresonator-based optical frequency comb with a 50-dB span of 25 nm (~3 THz) around 1550 nm, having a spacing of ~26 GHz, was used. A widely-tunable on-chip sampled-grating distributed-Bragg-reflector laser is offset locked across multiple comb lines. An arbitrary frequency synthesis between the comb lines is demonstrated by tuning the RF offset source, and better than 100Hz tuning resolution with ± 5 Hz accuracy is obtained. Frequency switching of the on-chip laser to a point more than two dozen comb lines away (~5.6 nm) and simultaneous locking to the corresponding nearest comb line is also achieved in a time ~200 ns. A low residual phase noise of the optical phase-locking system is successfully achieved, as experimentally verified by the value of -80 dBc/Hz at an offset of as low as 200 Hz.

4.
Opt Express ; 22(1): 102-9, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24514971

RESUMO

We propose a super-channel flexible wavelength division multiplexing (WDM) receiver architecture. The receiver, which requires no optical filtering, only a pair (I and Q phases) of coherent optical detectors, and an electrical receiver system, can simultaneously recover multiple wavelength-multiplexed channels using cascaded optical and electrical down-conversion. The receiver data capacity increases in proportion to the number of electrical sub-carrier channels. The proposed receiver concept has been described using a six-channel WDM receiver, and a two-channel ( ± 25 GHz) receiver IC, which is a key block of the WDM receiver, has been successfully demonstrated with two and three 2.5 Gb/s binary-phase-shift-key (BPSK) modulated channels.

5.
Opt Express ; 20(26): B197-203, 2012 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-23262851

RESUMO

A highly integrated 40 Gbit/s coherent optical receiver is reported using a Costas loop as a homodyne optical phase locked loop (OPLL). A photonic IC, an electrical IC, and a hybrid loop filter are characterized, and the feedback loop system is fully analyzed to build a stable homodyne OPLL. All components are integrated on a single substrate within the compact size of 10 × 10mm(2), and a 1.1 GHz loop bandwidth and a 120 psloop delay are achieved. The binary phase-shift keying receiver exhibits error-free (BER<10(-12)) up to 35 Gbit/s and BER<10(-7) for 40 Gbit/s with no latency, and consumes less than 3 W power.

6.
Opt Express ; 20(26): B377-85, 2012 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-23262876

RESUMO

Compared to traditional optics, photonic integrated circuits have advantages in size, weight, performance, reliability, power consumption, and cost. The size and stability also enable them to realize unique functions in coherent optics. Optical phase-locked loop (OPLL) based transmitters and receivers are examples. With photonic integration, the loop bandwidth of the OPLL can increase by orders of magnitude, and stable OPLLs have been achieved with closed-loop bandwidths >1 GHz.

7.
Opt Express ; 20(9): 9736-41, 2012 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-22535065

RESUMO

A highly-integrated optical phase-locked loop with a phase/frequency detector and a single-sideband mixer (SSBM) has been proposed and demonstrated for the first time. A photonic integrated circuit (PIC) has been designed, fabricated and tested, together with an electronic IC (EIC). The PIC integrates a widely-tunable sampled-grating distributed-Bragg-reflector laser, an optical 90 degree hybrid and four high-speed photodetectors on the InGaAsP/InP platform. The EIC adds a single-sideband mixer, and a digital phase/frequency detector, to provide single-sideband heterodyne locking from -9 GHz to 7.5 GHz. The loop bandwith is 400 MHz.


Assuntos
Eletrônica/instrumentação , Óptica e Fotônica/instrumentação , Refratometria/instrumentação , Telecomunicações/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...