Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2401344, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838094

RESUMO

This is a report on a pilot study that tests the feasibility of assembling photonic metamaterials (PMs) using light gradient forces. Following a strategy that works like modular construction, light gradient forces, produced by a tightly focused, one-dimensional standing wave optical trap (SWOT), time-multiplexed across a two-dimensional lattice were used to assemble voxels consisting of prefabricated, monodispersed nanoparticles (NPs) with radii ranging from 30 to 500 nm into three-dimensional structures on a hydrogel scaffold. Hundreds of NPs can be manipulated concurrently into a complex heterogeneous voxel this way, and then the process can be repeated by stitching together voxels to form a metamaterial of any size, shape, and constituency although imperfectly. Imperfections introduce random phase-shifts and amplitude variations that can have an adverse effect on the band structure. Regardless, PMs were created this way using two different dielectric NPs, polystyrene and rutile, and then the near-infrared performance for each was analyzed with angle-, wavelength-, and polarization-dependent reflection spectroscopy. The cross-polarized spectra showed evidence of a resonance peak. Interestingly, whereas the line-shape from the polypropylene array was symmetric, the rutile array was not, which may be indicative of Fano resonance. So, even with the structural defects, reflection spectroscopy revealed a resonance. This article is protected by copyright. All rights reserved.

2.
Adv Healthc Mater ; 12(31): e2302271, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37709282

RESUMO

3D bioprinting is revolutionizing the fields of personalized and precision medicine by enabling the manufacturing of bioartificial implants that recapitulate the structural and functional characteristics of native tissues. However, the lack of quantitative and noninvasive techniques to longitudinally track the function of implants has hampered clinical applications of bioprinted scaffolds. In this study, multimaterial 3D bioprinting, engineered nanoparticles (NPs), and spectral photon-counting computed tomography (PCCT) technologies are integrated for the aim of developing a new precision medicine approach to custom-engineer scaffolds with traceability. Multiple CT-visible hydrogel-based bioinks, containing distinct molecular (iodine and gadolinium) and NP (iodine-loaded liposome, gold, methacrylated gold (AuMA), and Gd2 O3 ) contrast agents, are used to bioprint scaffolds with varying geometries at adequate fidelity levels. In vitro release studies, together with printing fidelity, mechanical, and biocompatibility tests identified AuMA and Gd2 O3 NPs as optimal reagents to track bioprinted constructs. Spectral PCCT imaging of scaffolds in vitro and subcutaneous implants in mice enabled noninvasive material discrimination and contrast agent quantification. Together, these results establish a novel theranostic platform with high precision, tunability, throughput, and reproducibility and open new prospects for a broad range of applications in the field of precision and personalized regenerative medicine.


Assuntos
Bioimpressão , Iodo , Camundongos , Animais , Bioimpressão/métodos , Reprodutibilidade dos Testes , Engenharia Tecidual/métodos , Tomografia Computadorizada por Raios X , Impressão Tridimensional , Alicerces Teciduais/química
3.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36297329

RESUMO

There is a need to improve current cancer treatment regimens to reduce systemic toxicity, to positively impact the quality-of-life post-treatment. We hypothesized the negation of off-target toxicity of anthracyclines (e.g., Doxorubicin) by delivering Doxorubicin on magneto-electric silica nanoparticles (Dox-MagSiNs) to cancer cells. Dox-MagSiNs were completely biocompatible with all cell types and are therapeutically inert till the release of Doxorubicin from the MagSiNs at the cancer cells location. The MagSiNs themselves are comprised of biocompatible components with a magnetostrictive cobalt ferrite core (4−6 nm) surrounded by a piezoelectric fused silica shell of 1.5 nm to 2 nm thickness. The MagSiNs possess T2-MRI contrast properties on par with RESOVIST™ due to their cobalt ferrite core. Additionally, the silica shell surrounding the core was volume loaded with green or red fluorophores to fluorescently track the MagSiNs in vitro. This makes the MagSiNs a suitable candidate for trackable, drug nanocarriers. We used metastatic triple-negative breast cancer cells (MDAMB231), ovarian cancer cells (A2780), and prostate cancer cells (PC3) as our model cancer cell lines. Human umbilical vein endothelial cells (HUVEC) were used as control cell lines to represent blood-vessel cells that suffer from the systemic toxicity of Doxorubicin. In the presence of an external magnetic field that is 300× times lower than an MRI field, we successfully nanoporated the cancer cells, then triggered the release of 500 nM of doxorubicin from Dox-MagSiNs to successfully kill >50% PC3, >50% A2780 cells, and killed 125% more MDAMB231 cells than free Dox.HCl. In control HUVECs, the Dox-MagSiNs did not nanoporate into the HUVECS and did not exhibited any cytotoxicity at all when there was no triggered release of Dox.HCl. Currently, the major advantages of our approach are, (i) the MagSiNs are biocompatible in vitro and in vivo; (ii) the label-free nanoporation of Dox-MagSiNs into cancer cells and not the model blood vessel cell line; (iii) the complete cancellation of the cytotoxicity of Doxorubicin in the Dox-MagSiNs form; (iv) the clinical impact of such a nanocarrier will be that it will be possible to increase the current upper limit for cumulative-dosages of anthracyclines through multiple dosing, which in turn will improve the anti-cancer efficacy of anthracyclines.

4.
Adv Nanobiomed Res ; 2(7)2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36177378

RESUMO

Photocrosslinked hydrogels, such as methacrylate-modified gelatin (gelMA) and hyaluronic acid (HAMA), are widely utilized as tissue engineering scaffolds and/or drug delivery vehicles, but lack a suitable means for non-invasive, longitudinal monitoring of surgical placement, biodegradation, and drug release. Therefore, we developed a novel photopolymerizable X-ray contrast agent, methacrylate-modified gold nanoparticles (AuMA NPs), to enable covalent-linking to methacrylate-modified hydrogels (gelMA and HAMA) in one-step during photocrosslinking and non-invasive monitoring by X-ray micro-computed tomography (micro-CT). Hydrogels exhibited a linear increase in X-ray attenuation with increased Au NP concentration to enable quantitative imaging by contrast-enhanced micro-CT. The enzymatic and hydrolytic degradation kinetics of gelMA-Au NP hydrogels were longitudinally monitored by micro-CT for up to one month in vitro, yielding results that were consistent with concurrent measurements by optical spectroscopy and gravimetric analysis. Importantly, AuMA NPs did not disrupt the hydrogel network, rheology, mechanical properties, and hydrolytic stability compared with gelMA alone. GelMA-Au NP hydrogels were thus able to be bioprinted into well-defined three-dimensional architectures supporting endothelial cell viability and growth. Overall, AuMA NPs enabled the preparation of both conventional photopolymerized hydrogels and bioprinted scaffolds with tunable X-ray contrast for noninvasive, longitudinal monitoring of placement, degradation, and NP release by micro-CT.

5.
J Control Release ; 349: 143-155, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35508223

RESUMO

Tissue engineering is a rapidly evolving, multidisciplinary field that aims at generating or regenerating 3D functional tissues for in vitro disease modeling and drug screening applications or for in vivo therapies. A variety of advanced biological and engineering methods are increasingly being used to further enhance and customize the functionality of tissue engineered scaffolds. To this end, tunable drug delivery and release mechanisms are incorporated into tissue engineering modalities to promote different therapeutic processes, thus, addressing challenges faced in the clinical applications. In this review, we elaborate the mechanisms and recent developments in different drug delivery vehicles, including the quantum dots, nano/micro particles, and molecular agents. Different loading strategies to incorporate the therapeutic reagents into the scaffolding structures are explored. Further, we discuss the main mechanisms to tune and monitor/quantify the release kinetics of embedded drugs from engineered scaffolds. We also survey the current trend of drug delivery using stimuli driven biopolymer scaffolds to enable precise spatiotemporal control of the release behavior. Recent advancements, challenges facing current scaffold-based drug delivery approaches, and areas of future research are discussed.


Assuntos
Sistemas de Liberação de Medicamentos , Engenharia Tecidual , Excipientes , Preparações Farmacêuticas , Alicerces Teciduais/química
6.
Essays Biochem ; 65(3): 429-439, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34223619

RESUMO

Three-dimensional (3D) bioprinting is rapidly evolving, offering great potential for manufacturing functional tissue analogs for use in diverse biomedical applications, including regenerative medicine, drug delivery, and disease modeling. Biomaterials used as bioinks in printing processes must meet strict physiochemical and biomechanical requirements to ensure adequate printing fidelity, while closely mimicking the characteristics of the native tissue. To achieve this goal, nanomaterials are increasingly being investigated as a robust tool to functionalize bioink materials. In this review, we discuss the growing role of different nano-biomaterials in engineering functional bioinks for a variety of tissue engineering applications. The development and commercialization of these nanomaterial solutions for 3D bioprinting would be a significant step towards clinical translation of biofabrication.


Assuntos
Bioimpressão , Nanoestruturas , Bioimpressão/métodos , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais
7.
J Biomed Mater Res B Appl Biomater ; 109(10): 1407-1417, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33474824

RESUMO

The colloidal stability, cytotoxicity, and cellular uptake of hafnium oxide (HfO2 ) nanoparticles (NPs) were investigated in vitro to assess safety and efficacy for use as a deliverable theranostic in nanomedicine. Monoclinic HfO2 NPs, ~60-90 nm in diameter and ellipsoidal in shape, were directly prepared without calcination by a hydrothermal synthesis at 83% yield. The as-prepared, bare HfO2 NPs exhibited colloidal stability in cell culture media for at least 10 days without significant agglomeration or settling. The viability (live/dead assay) of human epithelial cells (HeLa) and monocyte-derived macrophages (THP-1) did not fall below 95% of untreated cells after up to 24 h exposure to HfO2 NPs at concentrations up to 0.80 mg/ml. Similarly, the mitochondrial activity (MTT assay) of HeLa and THP-1 cells did not fall below 80% of untreated cells after up to 24 h exposure to HfO2 NPs at concentrations up to 0.40 mg/ml. Cellular uptake was confirmed and visualized in both HeLa and THP-1 cells by fluorescence microscopy of HfO2 NPs labeled with Cy5 and transmission electron microscopy (TEM) of bare HfO2 NPs. TEM micrographs provided direct observation of macropinocytosis and endosomal compartmentalization within 4 h of exposure. Thus, the HfO2 NPs in this study exhibited colloidal stability, cytocompatibility, and cellular uptake for potential use as a deliverable theranostic in nanomedicine.


Assuntos
Háfnio/química , Nanopartículas Metálicas/química , Óxidos/química , Permeabilidade da Membrana Celular , Sobrevivência Celular/efeitos dos fármacos , Corantes Fluorescentes/química , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão , Imagem Óptica , Células THP-1
8.
J Mech Behav Biomed Mater ; 106: 103730, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32250948

RESUMO

Porous polyetheretherketone (PEEK) and bioactive hydroxyapatite (HA) reinforced PEEK scaffolds have attracted recent interest for enabling biologic fixation of orthopaedic and spinal implants, such as interbody spinal fusion cages. Porous PEEK and HA-PEEK scaffolds have been prepared by compression molding and leaching a fugitive porogen, most commonly NaCl salt crystals which exhibit a cubic morphology. Ellipsoidal or spherical porogen particles have been suggested to improve pore interconnectivity and permeability in scaffolds through improved porogen particle contact compared with a cubic porogen, but a direct comparison without concomitant effects from other factors is lacking. Therefore, the objective of this study was to investigate the effects of the porogen morphology on the architecture, permeability, and mechanical properties of bioactive HA whisker reinforced PEEK scaffolds. HA whisker reinforced PEEK scaffolds were prepared using a cubic or ellipsoidal NaCl porogen of equivalent size at multiple, equivalent levels of porosity and a constant level of HA reinforcement. Scaffolds prepared with an ellipsoidal porogen exhibited greater pore interconnectivity, indicated by a lower specific surface area measured by micro-computed tomography, and greater permeability than scaffolds prepared with a cubic porogen at 75-85% porosity. Compressive mechanical properties were not affected by the porogen morphology. Thus, an ellipsoidal porogen facilitated improved pore interconnectivity and permeability without compromising mechanical properties, and offers a means to circumvent an otherwise inherent design tradeoff between the benefit of increased porosity on permeability and the detriment of increased porosity on mechanical properties.


Assuntos
Durapatita , Alicerces Teciduais , Animais , Benzofenonas , Cetonas , Permeabilidade , Polietilenoglicóis , Polímeros , Porosidade , Vibrissas , Microtomografia por Raio-X
9.
Biomater Res ; 23: 15, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31641529

RESUMO

BACKGROUND: Collagen-based scaffolds reinforced with hydroxyapatite (HA) are an attractive choice for bone tissue engineering because their composition mimics that of bone. We previously reported the development of compression-molded collagen-HA scaffolds that exhibited high porosity, interconnected pores, and mechanical properties that were well-suited for surgical handling and fixation. The objective of this study was to investigate these novel collagen-HA scaffolds in combination with human adipose-derived stem cells (hASCs) as a template for bone formation in a subcutaneous athymic mouse model. METHODS: Collagen-HA scaffolds and collagen-only scaffolds were fabricated as previously described, and a clinically approved bone void filler was used as a control for the material. Constructs were seeded with hASCs and were pre-treated with either control or osteogenic media. A cell-free group was also included. Scaffolds were implanted subcutaneously in the backs of athymic nude mice for 8 weeks. Mineral deposition was quantified via micro-computed tomography. Histological and immunofluorescence images of the explants were used to analyze their vascular invasion, remodeling and cellularity. RESULTS: Cell-free collagen-HA scaffolds and those that were pre-seeded with osteogenically differentiated hASCs supported mineral deposition and vascular invasion at comparable rates, while cell-seeded constructs treated with the control medium showed lower mineralization after implantation. HA-reinforcement allowed collagen constructs to maintain their shape, provided improved cell-tissue-scaffold integration, and resulted in a more organized tissue when pre-treated in an osteogenic medium. Scaffold type and pre-treatment also determined osteoclast activity and therefore potential remodeling of the constructs. CONCLUSIONS: The results of this study cumulatively indicate that treatment medium and scaffold composition direct mineralization and angiogenic tissue formation in an ectopic model. The data suggest that it may be necessary to match the scaffold with a particular cell type and cell-specific pre-treatment to achieve optimal bone formation.

10.
J Med Imaging (Bellingham) ; 6(1): 013501, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30840726

RESUMO

Quantitative material decomposition of multiple mixed, or spatially coincident, contrast agent (gadolinium and iodine) and tissue (calcium and water) compositions is demonstrated using photon-counting spectral computed tomography (CT). Material decomposition is performed using constrained maximum likelihood estimation (MLE) in the image domain. MLE is calibrated by multiple linear regression of all pure material compositions, which exhibits a strong correlation ( R 2 > 0.91 ) between the measured x-ray attenuation in each photon energy bin and known concentrations in the calibration phantom. Material decomposition of mixed compositions in the sample phantom provides color material concentration maps that clearly identify and differentiate each material. The measured area under the receiver operating characteristic curve is > 0.95 , indicating highly accurate material identification. Material decomposition also provides accurate quantitative estimates of material concentrations in mixed compositions with a root-mean-squared error < 12 % of the maximum concentration for each material. Thus, photon-counting spectral CT enables quantitative molecular imaging of multiple spatially coincident contrast agent (gadolinium and iodine) and tissue (calcium and water) compositions, which is not possible with current clinical molecular imaging modalities, such as nuclear imaging and magnetic resonance imaging.

11.
Nanoscale ; 11(10): 4345-4354, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30793721

RESUMO

Biodegradable materials, such as collagen scaffolds, are used extensively in clinical medicine for tissue regeneration and/or as an implantable drug delivery vehicle. However, available methods to study biomaterial degradation are typically invasive, destructive, and/or non-volumetric. Therefore, the objective of this study was to investigate a new method for nondestructive, longitudinal, and volumetric measurement of collagen scaffold degradation. Gold nanoparticles (Au NPs) were covalently conjugated to collagen fibrils during scaffold preparation to enable contrast-enhanced imaging of collagen scaffolds. The X-ray attenuation of as-prepared scaffolds increased linearly with increased Au NP concentration such that ≥60 mM Au NPs provided sufficient contrast to measure scaffold degradation. Collagen scaffold degradation kinetics were measured to increase during in vitro enzymatic degradation in media with an increased concentration of collagenase. The scaffold degradation kinetics measured by micro-CT exhibited lower variability compared with gravimetric measurement and were validated by measurement of the release of Au NPs from the same samples by optical spectroscopy. Thus, Au NPs and CT synergistically enabled nondestructive, longitudinal, and volumetric measurement of collagen scaffold degradation.


Assuntos
Colágeno/química , Ouro/química , Nanopartículas Metálicas/química , Proteólise , Alicerces Teciduais/química , Microtomografia por Raio-X
12.
ACS Nano ; 13(2): 1097-1106, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30633498

RESUMO

Polymers with superior mechanical properties are desirable in many applications. In this work, polyethylene (PE) films reinforced with exfoliated thermally reduced graphene oxide (TrGO) fabricated using a roll-to-roll hot-drawing process are shown to have outstanding mechanical properties. The specific ultimate tensile strength and Young's modulus of PE/TrGO films increased monotonically with the drawing ratio and TrGO filler fraction, reaching up to 3.2 ± 0.5 and 109.3 ± 12.7 GPa, respectively, with a drawing ratio of 60× and a very low TrGO weight fraction of 1%. These values represent by far the highest reported to date for a polymer/graphene composite. Experimental characterizations indicate that as the polymer films are drawn, TrGO fillers are exfoliated, which is further confirmed by molecular dynamics (MD) simulations. Exfoliation increases the specific area of the TrGO fillers in contact with the PE matrix molecules. Molecular dynamics simulations show that the PE-TrGO interaction is stronger than the PE-PE intermolecular van der Waals interaction, which enhances load transfer from PE to TrGO and leverages the ultrahigh mechanical properties of TrGO.

13.
Nanoscale Adv ; 1(12): 4812-4826, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36133139

RESUMO

The increasing frequency of nosocomial infections caused by antibiotic-resistant microorganisms concurrent with the stagnant discovery of new classes of antibiotics has made the development of new antibacterial agents a critical priority. Our approach is an antibiotic-free strategy drawing inspiration from bacteriophages to combat antibiotic-resistant bacteria. We developed a nanoparticle-based antibacterial system that structurally mimics the protein-turret distribution on the head structure of certain bacteriophages and explored a combination of different materials arranged hierarchically to inhibit bacterial growth and ultimately kill pathogenic bacteria. Here, we describe the synthesis of phage-mimicking antibacterial nanoparticles (ANPs) consisting of silver-coated gold nanospheres distributed randomly on a silica core. The silver-coating was deposited in an anisotropic fashion on the gold nanospheres. Structurally, our nanoparticles mimicked the bacteriophages of the family Microviridae by up to 88%. These phage-mimicking ANPs were tested for bactericidal efficacy against four clinically relevant nosocomial pathogens (Staphylococcus aureus USA300, Pseudomonas aeruginosa FRD1, Enterococcus faecalis, and Corynebacterium striatum) and for biocompatibility with skin cells. Bacterial growth of all four bacteria was inhibited (21% to 90%) as well as delayed (by up to 5 h). The Gram-positive organisms were shown to be more sensitive to the nanoparticle treatment. Importantly, the phage-mimicking ANPs did not show any significant cytotoxic effects against human skin keratinocytes. Our results indicate the potential for phage-mimicking antimicrobial nanoparticles as a highly effective, alternative antibacterial agent, which may be suitable for co-administration with existing available formulations.

14.
Acta Biomater ; 82: 122-132, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30316022

RESUMO

A preclinical murine model of hydroxyapatite (HA) breast microcalcifications (µcals), which are an important clinical biomarker for breast cancer detection, was used to investigate the independent effects of high affinity bisphosphonate (BP) ligands and a polyethylene glycol (PEG) spacer on targeted delivery of gold nanoparticles (Au NPs) for contrast-enhanced radiographic detection. The addition of BP ligands to PEGylated Au NPs (BP-PEG-Au NPs) resulted in five-fold greater binding affinity for targeting HA µcals, as expected, due to the strong binding affinity of BP ligands for calcium. Therefore, BP-PEG-Au NPs were able to target HA µcals in vivo after intramammary delivery, which enabled contrast-enhanced radiographic detection of µcals in both normal and radiographically dense mammary tissues similar to previous results for BP-Au NPs, while PEG-Au NPs did not. The addition of a PEG spacer between the BP targeting ligand and Au NP surface enabled improved in vivo clearance. PEG-Au NPs and BP-PEG-Au NPs were cleared from all mammary glands (MGs) and control MGs, respectively, within 24-48 h after intramammary delivery, while BP-Au NPs were not. PEGylated Au NPs were slowly cleared from MGs by lymphatic drainage and accumulated in the spleen. Histopathology revealed uptake of PEG-Au NPs and BP-PEG-Au NPs by macrophages in the spleen, liver, and MGs; there was no evidence of toxicity due to the accumulation of NPs in organs and tissues compared with untreated controls for up to 28 days after delivery. STATEMENT OF SIGNIFICANCE: Au NP imaging probes and therapeutics are commonly surface functionalized with PEG and/or high affinity targeting ligands for delivery. However, direct comparisons of PEGylated Au NPs with and without a targeting ligand, or ligand-targeted Au NPs with and without a PEG spacer, on in vivo targeting efficiency, biodistribution, and clearance are limited. Therefore, the results of this study are important for the rationale design of targeted NP imaging probes and therapeutics, including the translation of BP-PEG-Au NPs which enable improved sensitivity and specificity for the radiographic detection of abnormalities (e.g., µcals) in women with dense breast tissue.


Assuntos
Calcinose , Difosfonatos , Sistemas de Liberação de Medicamentos , Ouro , Neoplasias Mamárias Experimentais , Nanopartículas Metálicas , Animais , Calcinose/diagnóstico por imagem , Calcinose/tratamento farmacológico , Calcinose/metabolismo , Calcinose/patologia , Difosfonatos/química , Difosfonatos/farmacocinética , Difosfonatos/farmacologia , Feminino , Ouro/química , Ouro/farmacocinética , Ouro/farmacologia , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia
15.
Biomed Opt Express ; 9(4): 1613-1629, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29675306

RESUMO

Super-resolution fluorescence microscopy is an important tool in biomedical research for its ability to discern features smaller than the diffraction limit. However, due to its difficult implementation and high cost, the super-resolution microscopy is not feasible in many applications. In this paper, we propose and demonstrate a saturation-based super-resolution fluorescence microscopy technique that can be easily implemented and requires neither additional hardware nor complex post-processing. The method is based on the principle of stepwise optical saturation (SOS), where M steps of raw fluorescence images are linearly combined to generate an image with a [Formula: see text]-fold increase in resolution compared with conventional diffraction-limited images. For example, linearly combining (scaling and subtracting) two images obtained at regular powers extends the resolution by a factor of 1.4 beyond the diffraction limit. The resolution improvement in SOS microscopy is theoretically infinite but practically is limited by the signal-to-noise ratio. We perform simulations and experimentally demonstrate super-resolution microscopy with both one-photon (confocal) and multiphoton excitation fluorescence. We show that with the multiphoton modality, the SOS microscopy can provide super-resolution imaging deep in scattering samples.

16.
J Tissue Eng Regen Med ; 12(1): e541-e549, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27690279

RESUMO

Key aspects of native endochondral bone development and fracture healing can be mimicked in mesenchymal stem cells (MSCs) through standard in vitro chondrogenic induction. Exploiting this phenomenon has recently emerged as an attractive technique to engineer bone tissue, however, relatively little is known about the best conditions for doing so. The objective of the present study was to compare the bone-forming capacity and angiogenic induction of hypertrophic cell constructs containing human adipose-derived stem cells (hASCs) primed for chondrogenesis in two different culture systems: high-density pellets and alginate bead hydrogels. The hASC constructs were subjected to 4 weeks of identical chondrogenic induction in vitro, encapsulated in an agarose carrier, and then implanted subcutaneously in immune-compromised mice for 8 weeks to evaluate their endochondral potential. At the time of implantation, both pellets and beads expressed aggrecan and type II collagen, as well as alkaline phosphatase (ALP) and type X collagen. Interestingly, ASCs in pellets formed a matrix containing higher glycosaminoglycan and collagen contents than that in beads, and ALP activity per cell was higher in pellets. However, after 8 weeks in vivo, pellets and beads induced an equivalent volume of mineralized tissue and a comparable level of vascularization. Although osteocalcin and osteopontin-positive osteogenic tissue and new vascular growth was found within both types of constructs, all appeared to be better distributed throughout the hydrogel beads. The results of this ectopic model indicate that hydrogel culture may be an attractive alternative to cell pellets for bone tissue engineering via the endochondral pathway. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Alginatos/química , Técnicas de Cultura de Células/métodos , Osteogênese , Animais , Biomarcadores , Condrogênese , Feminino , Humanos , Hipertrofia , Implantes Experimentais , Camundongos
17.
Bone ; 105: 67-74, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28826844

RESUMO

Small animal models, and especially transgenic models, have become widespread in the study of bone mechanobiology and metabolic bone disease, but test methods for measuring fracture toughness on multiple replicates or at multiple locations within a single small animal bone are lacking. Therefore, the objective of this study was to develop a method to measure cortical bone fracture toughness in multiple specimens and locations along the diaphysis of small animal bones. Arc-shaped tension specimens were prepared from the mid-diaphysis of rabbit ulnae and loaded to failure to measure the radial fracture toughness in multiple replicates per bone. The test specimen dimensions, crack length, and maximum load met requirements for measuring the plane strain fracture toughness. Experimental groups included a control group, bisphosphonate treatment group, and an ex vivo deproteinization treatment following bisphosphonate treatment (5 rabbits/group and 15 specimens/group). The fracture toughness of ulnar cortical bone from rabbits treated with zoledronic acid for six months exhibited no difference compared with the control group. Partially deproteinized specimens exhibited significantly lower fracture toughness compared with both the control and bisphosphonate treatment groups. The deproteinization treatment increased tissue mineral density (TMD) and resulted in a negative linear correlation between the measured fracture toughness and TMD. Fracture toughness measurements were repeatable with a coefficient of variation of 12-16% within experimental groups. Retrospective power analysis of the control and deproteinization treatment groups indicated a minimum detectable difference of 0.1MPa·m1/2. Therefore, the overall results of this study suggest that arc-shaped tension specimens offer an advantageous new method for measuring the fracture toughness in small animal bones.


Assuntos
Osso Cortical/fisiopatologia , Difosfonatos/uso terapêutico , Fraturas Ósseas/tratamento farmacológico , Fraturas Ósseas/fisiopatologia , Proteínas/isolamento & purificação , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Osso Cortical/efeitos dos fármacos , Osso Cortical/patologia , Difosfonatos/farmacologia , Imageamento Tridimensional , Masculino , Coelhos , Ulna/diagnóstico por imagem , Ulna/efeitos dos fármacos , Ulna/fisiopatologia , Microtomografia por Raio-X
18.
Med Phys ; 44(10): 5187-5197, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28681402

RESUMO

PURPOSE: Advances in photon-counting detectors have enabled quantitative material decomposition using multi-energy or spectral computed tomography (CT). Supervised methods for material decomposition utilize an estimated attenuation for each material of interest at each photon energy level, which must be calibrated based upon calculated or measured values for known compositions. Measurements using a calibration phantom can advantageously account for system-specific noise, but the effect of calibration methods on the material basis matrix and subsequent quantitative material decomposition has not been experimentally investigated. Therefore, the objective of this study was to investigate the influence of the range and number of contrast agent concentrations within a modular calibration phantom on the accuracy of quantitative material decomposition in the image domain. METHODS: Gadolinium was chosen as a model contrast agent in imaging phantoms, which also contained bone tissue and water as negative controls. The maximum gadolinium concentration (30, 60, and 90 mM) and total number of concentrations (2, 4, and 7) were independently varied to systematically investigate effects of the material basis matrix and scaling factor calibration on the quantitative (root mean squared error, RMSE) and spatial (sensitivity and specificity) accuracy of material decomposition. Images of calibration and sample phantoms were acquired using a commercially available photon-counting spectral micro-CT system with five energy bins selected to normalize photon counts and leverage the contrast agent k-edge. Material decomposition of gadolinium, calcium, and water was performed for each calibration method using a maximum a posteriori estimator. RESULTS: Both the quantitative and spatial accuracy of material decomposition were most improved by using an increased maximum gadolinium concentration (range) in the basis matrix calibration; the effects of using a greater number of concentrations were relatively small in magnitude by comparison. The material basis matrix calibration was more sensitive to changes in the calibration methods than the scaling factor calibration. The material basis matrix calibration significantly influenced both the quantitative and spatial accuracy of material decomposition, while the scaling factor calibration influenced quantitative but not spatial accuracy. Importantly, the median RMSE of material decomposition was as low as ~1.5 mM (~0.24 mg/mL gadolinium), which was similar in magnitude to that measured by optical spectroscopy on the same samples. CONCLUSION: The accuracy of quantitative material decomposition in photon-counting spectral CT was significantly influenced by calibration methods which must therefore be carefully considered for the intended diagnostic imaging application.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Fótons , Tomografia Computadorizada por Raios X , Calibragem , Imagens de Fantasmas , Razão Sinal-Ruído
19.
Nanoscale ; 8(28): 13627-37, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27364973

RESUMO

The interaction of hafnium oxide (HfO2) nanoparticles (NPs) with X-ray and mid-infrared radiation was investigated to assess the potential as a multifunctional diagnostic probe for X-ray computed tomography (CT) and/or mid-infrared biosensing. HfO2 NPs of controlled size were prepared by a sol-gel process and surface functionalized with polyvinylpyrrolidone, resulting in relatively spherical and monodispersed NPs with a tunable mean diameter in the range of ∼7-31 nm. The X-ray attenuation of HfO2 NPs was measured over 0.5-50 mM concentration and compared with Au NPs and iodine, which are the most prominent X-ray contrast agents currently used in research and clinical diagnostic imaging, respectively. At clinical CT tube potentials >80 kVp, HfO2 NPs exhibited superior or similar X-ray contrast compared to Au NPs, while both exhibited significantly greater X-ray contrast compared to iodine, due to the favorable location of the k-shell absorption edge for hafnium and gold. Moreover, energy-dependent differences in X-ray attenuation enabled simultaneous quantitative molecular imaging of each agent using photon-counting spectral (multi-energy) CT. HfO2 NPs also exhibited a strong mid-infrared absorption in the Reststrahlen band from ∼250-800 cm(-1) and negative permittivity below 695 cm(-1), which can enable development of mid-infrared biosensors and contrast agents, leveraging surface enhanced mid-infrared and/or phonon polariton absorption.


Assuntos
Técnicas Biossensoriais , Meios de Contraste , Háfnio , Nanopartículas Metálicas , Óxidos , Tomografia Computadorizada por Raios X , Raios X
20.
J Biomed Mater Res A ; 104(9): 2178-88, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27112109

RESUMO

Acellular hydroxyapatite (HA) reinforced collagen scaffolds were previously reported to induce angiogenesis and osteogenesis after ectopic implantation but the effect of the HA volume fraction was not investigated. Therefore, the objective of this study was to investigate the effect of HA volume fraction on in vivo angiogenesis and osteogenesis in acellular collagen scaffolds containing 0, 20, and 40 vol % HA after subcutaneous ectopic implantation for up to 12 weeks in mice. Endogenous cell populations were able to completely and uniformly infiltrate the entire scaffold within 6 weeks independent of the HA content, but the cell density was increased in scaffolds containing HA versus collagen alone. Angiogenesis, remodeling of the original scaffold matrix, mineralization, and osteogenic gene expression were evident in scaffolds containing HA, but were not observed in collagen scaffolds. Moreover, HA promoted a dose-dependent increase in measured vascular density, cell density, matrix deposition, and mineralization. Therefore, the results of this study suggest that HA promoted the recruitment and differentiation of endogenous cell populations to support angiogenic and osteogenic activity in collagen scaffolds after subcutaneous ectopic implantation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2178-2188, 2016.


Assuntos
Colágeno/química , Durapatita/química , Regulação da Expressão Gênica , Modelos Biológicos , Neovascularização Fisiológica , Osteogênese , Alicerces Teciduais/química , Animais , Feminino , Camundongos , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...