Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Microbiol Resour Announc ; : e0042224, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832805

RESUMO

Here, we report 27 metagenome-assembled bacterial genomes (MAGs) from litter samples of a secondary forest located in Brazil over an Amazonian Dark Earth pool. The data set includes members from the phyla Pseudomonadata (14 MAGs), Actinomycetota (7 MAGs), Bacteroidota (4 MAGs), Bacillota (1 MAG), and Bdellovibrionota (1 MAG).

2.
Transl Anim Sci ; 8: txad148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38221956

RESUMO

The objective of this study was to evaluate the effects of including monensin and two doses of CNSE in a high producing dairy cow diet on ruminal bacterial communities. A dual-flow continuous culture system was used in a replicated 4 × 4 Latin Square design. A basal diet was formulated to meet the requirements of a cow producing 45 kg of milk per d (17% crude protein and 27% starch). There were four experimental treatments: the basal diet without any feed additive (CON), 2.5 µM monensin (MON), 100 ppm CNSE granule (CNSE100), and 200 ppm CNSE granule (CNSE200). Samples were collected from the fluid and solid effluents at 3, 6, and 9 h after feeding; a composite of all time points was made for each fermenter within their respective fractions. Bacterial community composition was analyzed by sequencing the V4 region of the 16S rRNA gene using the Illumina MiSeq platform. Treatment responses for bacterial community structure were analyzed with the PERMANOVA test run with the R Vegan package. Treatment responses for correlations were analyzed with the CORR procedure of SAS. Orthogonal contrasts were used to test the effects of (1) ADD (CON vs. MON, CNSE100, and CNSE200); (2) MCN (MON vs. CNSE100 and CNSE200); and (3) DOSE (CNSE100 vs. CNSE200). Significance was declared at P ≤ 0.05. We observed that the relative abundance of Sharpea (P < 0.01), Mailhella (P = 0.05), Ruminococcus (P = 0.03), Eubacterium (P = 0.01), and Coprococcus (P < 0.01) from the liquid fraction and the relative abundance of Ruminococcus (P = 0.03) and Catonella (P = 0.02) from the solid fraction decreased, while the relative abundance of Syntrophococcus (P = 0.02) increased in response to MON when compared to CNSE treatments. Our results demonstrate that CNSE and monensin have similar effects on the major ruminal bacterial genera, while some differences were observed in some minor genera. Overall, the tested additives would affect the ruminal fermentation in a similar pattern.

3.
Front Microbiol ; 14: 1201064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547696

RESUMO

Despite the advent of third-generation sequencing technologies, modern bacterial ecology studies still use Illumina to sequence small (~400 bp) hypervariable regions of the 16S rRNA SSU for phylogenetic classification. By sequencing a larger region of the rRNA gene operons, the limitations and biases of sequencing small portions can be removed, allowing for more accurate classification with deeper taxonomic resolution. With Nanopore sequencing now providing raw simplex reads with quality scores above Q20 using the kit 12 chemistry, the ease, cost, and portability of Nanopore play a leading role in performing differential bacterial abundance analysis. Sequencing the near-entire rrn operon of bacteria and archaea enables the use of the universally conserved operon holding evolutionary polymorphisms for taxonomic resolution. Here, a reproducible and validated pipeline was developed, RRN-operon Enabled Species-level Classification Using EMU (RESCUE), to facilitate the sequencing of bacterial rrn operons and to support import into phyloseq. Benchmarking RESCUE showed that fully processed reads are now parallel or exceed the quality of Sanger, with median quality scores of approximately Q20+, using the R10.4 and Guppy SUP basecalling. The pipeline was validated through two complex mock samples, the use of multiple sample types, with actual Illumina data, and across four databases. RESCUE sequencing is shown to drastically improve classification to the species level for most taxa and resolves erroneous taxa caused by using short reads such as Illumina.

4.
Res Microbiol ; 174(8): 104116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37573924

RESUMO

Agaricus subrufescens, also known as the "sun mushroom," has significant nutritional and medicinal value. However, its short shelf life due to the browning process results in post-harvest losses unless it's quickly dehydrated. This restricts its availability to consumers in the form of capsules. A genome sequence of A. subrufescens may lead to new cultivation alternatives or the application of gene editing strategies to delay the browning process. We assembled a chromosome-scale genome using a hybrid approach combining Illumina and Nanopore sequencing. The genome was assembled into 13 chromosomes and 31 unplaced scaffolds, totaling 44.5 Mb with 96.5% completeness and 47.24% GC content. 14,332 protein-coding genes were identified, with 64.6% of the genome covered by genes and 23.41% transposable elements. The mitogenome was circularized and encoded fourteen typical mitochondrial genes. Four polyphenol oxidase (PPO) genes and the Mating-type locus were identified. Phylogenomic analysis supports the placement of A. subrufescens in the Agaricomycetes clade. This is the first available genome sequence of a strain of the "sun mushroom." Results are available through a Genome Browser (https://plantgenomics.ncc.unesp.br/gen.php?id=Asub) and can support further fungal biological and genomic studies.


Assuntos
Agaricus , Agaricus/genética , Genômica , Cromossomos , Biotecnologia , Genoma Fúngico
5.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37350733

RESUMO

Magnesium oxide (MgO) is one of the most used Mg supplements in livestock. However, to avoid relying upon only one Mg source, it is important to have alternative Mg sources. Therefore, the objective of this study was to evaluate the effects of the interaction of two Mg sources with buffer use on the ruminal microbiota composition, ruminal fermentation, and nutrient digestibility in lactating dairy cows. Twenty lactating Holstein cows were blocked by parity and days in milk into five blocks with four cows each, in a 2 × 2 factorial design. Within blocks, cows were assigned to one of four treatments: 1) MgO; 2) MgO + Na sesquicarbonate (MgO+); 3) calcium-magnesium hydroxide (CaMgOH); 4) CaMgOH + Na sesquicarbonate (CaMgOH+). For 60 d, cows were individually fed a corn silage-based diet, and treatments were top-dressed. Ruminal fluid was collected via an orogastric tube, for analyses of the microbiota composition, volatile fatty acids (VFA), lactate, and ammonia nitrogen (NH3-N). The microbiota composition was analyzed using V4/16S rRNA gene sequencing, and taxonomy was assigned using the Silva database. Statistical analysis was carried out following the procedures of block design analysis, where block and cow were considered random variables. Effects of Mg source, buffer, and the interaction between Mg Source × Buffer were analyzed through orthogonal contrasts. There was no interaction effect of the two factors evaluated. There was a greater concentration of NH3-N, lactate, and butyrate in the ruminal fluid of cows fed with CaMg(OH)2, regardless of the buffer use. The increase in these fermentation intermediates/ end-products can be explained by an increase in abundance of micro-organisms of the genus Prevotella, Lactobacillus, and Butyrivibrio, which are micro-organisms mainly responsible for proteolysis, lactate-production, and butyrate-production in the rumen, respectively. Also, dietary buffer use did not affect the ruminal fermentation metabolites and pH; however, an improvement of the apparent total tract digestibility of dry matter (DM), organic matter (OM), neutral fiber detergent (NDF), and acid fiber detergent (ADF) were found for animals fed with dietary buffer. In summary, there was no interaction effect of buffer use and Mg source, whereas buffer improved total tract apparent digestibility of DM and OM through an increase in NDF and ADF digestibility and CaMg(OH)2 increased ruminal concentration of butyrate and abundance of butyrate-producing bacteria.


Magnesium oxide (MgO) is extensively used as a dietary magnesium (Mg) source in dairy cow diets. However, dairy operations can benefit from other Mg sources. Thus, we evaluated the replacement of dietary MgO with calcium­magnesium hydroxide (CaMg(OH)2) in diets with and without ruminal buffer and their effects on the ruminal microbiota composition, ruminal fermentation, and nutrient digestibility in lactating dairy cows. The study used 20 lactating Holstein cows that were blocked in groups of four and randomly assigned to one of the four treatments. The ruminal content, feed, feces, and urine were collected for analysis of the microbiota composition, ruminal fermentation, nitrogen metabolism, and apparent nutrient digestibility. There was no interaction effect of dietary buffer use and Mg source, while buffer improved total tract apparent digestibility of the dry matter and fiber components; CaMg(OH)2 increased the ruminal concentration of butyrate and the abundance of butyrate-producing bacteria. In summary, we conclude that using CaMg(OH)2 can improve ruminal fermentation regardless of buffer use, which indicates that we can take advantage of the mineral formulation in the diet to modulate the ruminal microbiota composition.


Assuntos
Lactação , Microbiota , Gravidez , Feminino , Bovinos , Animais , Magnésio/análise , Magnésio/metabolismo , Magnésio/farmacologia , Fermentação , Óxido de Magnésio/análise , Óxido de Magnésio/metabolismo , Óxido de Magnésio/farmacologia , Detergentes/análise , Detergentes/metabolismo , Detergentes/farmacologia , RNA Ribossômico 16S/metabolismo , Digestão , Leite/metabolismo , Dieta/veterinária , Butiratos/análise , Zea mays/metabolismo , Lactatos/análise , Lactatos/metabolismo , Lactatos/farmacologia , Rúmen/metabolismo
6.
Aging Dis ; 14(6): 2081-2095, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37199579

RESUMO

In recent decades, gut microbiome research has experienced significant growth, driven by technological advances that enable quantifying bacterial taxa with greater precision. Age, diet, and living environment have emerged as three key factors influencing gut microbes. Dysbiosis, resulting from alterations in these factors, may lead to changes in bacterial metabolites that regulate pro- and anti-inflammatory processes and consequently impact bone health. Restoration of a healthy microbiome signature could mitigate inflammation and potentially reduce bone loss associated with osteoporosis or experienced by astronauts during spaceflight. However, current research is hindered by contradictory findings, insufficient sample sizes, and inconsistency in experimental conditions and controls. Despite progress in sequencing technology, defining a healthy gut microbiome across global populations remains elusive. Challenges persist in identifying accurate gut bacterial metabolics, specific taxa, and their effects on host physiology. We suggest greater attention be directed towards this issue in Western countries as the cost of treating osteoporosis in the United States reaches billions of dollars annually, with expenses projected to continue rising.

7.
PLoS One ; 17(12): e0279386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36538559

RESUMO

A deep understanding of the cattle gastrointestinal microbiome is crucial to selective breeding high-efficiency animals that produce more and generate less environmental damage. Here we performed the taxonomic identification of Bacterial and Archaeal communities using high throughput 16SrRNA gene sequencing from critical compartments of the gastrointestinal tract of Bradford cattle raised in a natural grassland in the Pampa biome, Brazil. We analyzed 110 samples, including saliva, ruminal fluid, and feces from 36 months old Bradford heifers (weighing on average 343 ± 30 kg by the sampling time). To reduce unexpected variation and confounders, we selected the animals from the same breed, submitted them to the same food source, and collected the samples for three consecutive years from different animals in the same season. Our main goal was to analyze the microbial shifts throughout the gastrointestinal tract to reference future works proposing management strategies and interventions to improve animal nutrition and increase production in the Pampa Biome. To accomplish our objective, we accessed the microbial community differences in groups with a high and low weight gain controlling for food ingestion and quality of grazed pasture. Few taxa were shared among the samples. About 40% of the phyla and 60% of the genera were unique from saliva samples, and 12.4% of the microbial genera were uniquely found in feces. All samples shared only 36.1% of phyla and 7.5% of genera. Differences in microbial diversity and taxa counts were observed. The ruminal fluid presented the lowest microbial richness, while saliva and feces presented the highest microbial richness. On the other hand, saliva and feces also presented more distinct communities between themselves when compared with ruminal samples. Our data showed that the saliva microbiome is not representative of the rumen microbiome and should not be used as an easy-to-collect sample for studies about the rumen microbiome.


Assuntos
Ração Animal , Microbiota , Bovinos , Animais , Feminino , Ração Animal/análise , Rúmen/microbiologia , Trato Gastrointestinal/microbiologia , Microbiota/genética , Fezes/microbiologia , RNA Ribossômico 16S/genética
8.
Braz J Microbiol ; 53(4): 2051-2063, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36083529

RESUMO

Bacillus subtilis is a versatile bacterial species able to produce surfactin, a lipopeptide biosurfactant. We carried out the phylogenomic characterization and pangenomic analyses using available B. subtilis complete genomes. Also, we report the whole genome of the biosurfactant-producing B. subtilis strain RI4914 that was isolated from effluent water from an oil exploration field. We applied a hybrid sequencing approach using both long- and short-read sequencing technologies to generate a highly accurate, single-chromosome genome. The pangenomics analysis of 153 complete genomes classified as B. subtilis retrieved from the NCBI shows an open pangenome composed of 28,511 accessory genes, which agrees with the high genetic plasticity of the species. Also, this analysis suggests that surfactin production is a common trait shared by members of this species since the srfA operon is highly conserved among the B. subtilis strains found in most of the assemblies available. Finally, increased surfactin production corroborates the higher srfAA gene expression in B. subtilis strain RI4914.


Assuntos
Bacillus subtilis , Peptídeos Cíclicos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Filogenia , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/metabolismo , Lipopeptídeos , Óperon , Proteínas de Bactérias/metabolismo
9.
Metabolites ; 12(9)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36144277

RESUMO

Recently, patients with glycogen storage disease (GSD) have been described as having gut dysbiosis, lower fecal pH, and an imbalance in SCFAs due to an increase in acetate and propionate levels. Here, we report the fecal measurement of bacterial-related metabolites formic, acetic, lactic, propionic, and succinic acid, a key metabolite of both host and microbiota, on a previously described cohort of 24 patients (GSD Ia = 15, GSD Ib = 5, 1 GSD III = 1 and GSD IX = 3) and 16 healthy controls, with similar sex and age, using the high-performance liquid chromatography technique. The succinic acid levels were higher in the GSD patients than in the controls (patients = 38.02; controls = 27.53; p = 0.045), without differences between the groups for other metabolites. Fecal pH present inverse correlation with lactic acid (R = -0.54; p = 0.0085), while OTUs were inversely correlated with both lactic (R = -0.46; p = 0.026) and formic (R = -0.54; p = 0.026) acids. Using two distinct metrics of diversity, borderline significance was obtained for propionic acid, affecting the microbial structure on Euclidean basis in 8% (r2 = 0.081; p = 0.079), and for lactic acid, affecting 6% of microbial structure using Bray-Curtis distance (r2 = 0.065; p = 0.060). No correlation was found between SCFAs and total carbohydrate consumption among the participants or uncooked cornstarch consumption among the patients.

10.
Microbiol Res ; 243: 126643, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33227680

RESUMO

Seeds are reservoirs of beneficial and harmful microorganism that modulates plant growth and health. Here, we access seed to seedling bacteriome assembly modified by seed-disinfection and the underlined effect over maize germination performance and root-seedlings microbial colonization. Seed-disinfection was performed with sodium hypochlorite (1.25 %, 30 min), resulting in a reduction of the cultivable-dependent fraction of seed-borne bacteria population, but not significantly detected by real-time PCR, microscopy, and biochemical analysis of the roots on germinated seeds. 16S rRNA sequencing revealed that bacteriome of non-germinated seeds and roots of 5-d germinated seeds exhibited similar diversity and did not differ in the structure concerning seed-disinfection. On the other hand, the relative abundance reduction of the genera f_Enterobacteriaceae_922761 (unassigned genus), Azospirillum, and Acinetobacter in disinfected-seed prior germination seems to display changes in prominence of several new taxa in the roots of germinated seeds. Interestingly, this bacteriome community rebuilt negatively affected the germination speed and growth of maize plantlets. Additionally, bacteriome re-shape increased the maize var. DKB 177 susceptible to the seed-borne plant pathogen Penicillium sp. Such changes in the natural seed-borne composition removed the natural barrier, increasing susceptibility to pathogens, impairing disinfected seeds to germinate, and develop. We conclude that bacteria borne in seeds modulate the relative abundance of taxa colonizing emerged roots, promote germination, seedling growth, and protect the maize against fungal pathogens.


Assuntos
Bactérias/isolamento & purificação , Fungos/fisiologia , Sementes/microbiologia , Zea mays/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/genética , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Germinação , Microbiota , Filogenia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Sementes/crescimento & desenvolvimento , Zea mays/microbiologia
11.
PLoS One ; 15(9): e0238632, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32956415

RESUMO

The purpose was identify an association between meconium microbiome, extra-uterine growth restriction, and head circumference catch-up. MATERIALS AND METHODS: Prospective study with preterm infants born <33 weeks gestational age (GA), admitted at Neonatal Unit and attending the Follow-Up Preterm Program of a tertiary hospital. Excluded out born infants; presence of congenital malformations or genetic syndromes; congenital infections; HIV-positive mothers; and newborns whose parents or legal guardians did not authorize participation. Approved by the institution's ethics committee. Conducted 16S rRNA sequencing using PGM Ion Torrent meconium samples for microbiota analysis. RESULTS: Included 63 newborns, GA 30±2.3 weeks, mean weight 1375.80±462.6 grams, 68.3% adequate weight for GA at birth. Polynucleobacter (p = 0.0163), Gp1 (p = 0.018), and Prevotella (p = 0.038) appeared in greater abundance in meconium of preterm infants with adequate birth weight for GA. Thirty (47.6%) children reached head circumference catch-up before 6 months CA and 33 (52.4%) after 6 months CA. Salmonella (p<0.001), Flavobacterium (p = 0.026), and Burkholderia (p = 0.026) were found to be more abundant in meconium in the group of newborns who achieved catch-up prior to 6th month CA. CONCLUSION: Meconium microbiome abundance was related to adequacy of weight for GA. Meconium microbiome differs between children who achieve head circumference catch-up by the 6th month of corrected age or after this period.


Assuntos
Cefalometria , Recém-Nascido Prematuro/crescimento & desenvolvimento , Mecônio/microbiologia , Microbiota , Adulto , Biodiversidade , Feminino , Microbioma Gastrointestinal , Idade Gestacional , Humanos , Recém-Nascido , Masculino , Leite Humano , Análise Multivariada , Filogenia
12.
Heliyon ; 6(6): e04190, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32613104

RESUMO

Intestinal microbiota perform important functions for the health of fishes. Knowing the microbial composition and evaluating the possible effects caused by anthropogenic pollution in the intestinal microbiota of fish populations might represent an important step in defining microbial biomarkers for water pollution. This study evaluated the impact of environmental contamination on the gut microbiota of the livebearer killifish Phalloceros caudimaculatus. The 16S survey using the V4 region of the 16S rRNA gene was used to characterize and compare the microbiota of two P. caudimaculatus populations from streams with different levels of environmental contamination in Rio Grande, RS, Brazil. Twelve bacterial operational taxonomic units (OTUs) (around one-third of the total) were shared between both fish populations. They represent the core microbiota of the gut in this species. The dominant phyla were Protebacteria and Firmicutes, with more than 80% of relative abundance. The dominant genus was Burkholderia with more than 35% of the relative abundance irrespective of the environmental condition. We detected a lower microbial diversity (Shannon index and observed OTUs) in fish from the polluted stream compared to the reference stream. The PERMANOVA analysis showed that the intestinal microbial communities from fish living in the polluted stream were distinct from those found in the reference stream (p < 0.05). Finally, we identified Luteolibacter, Methylocaldum and Rhodobacter genera, which correlated strongly with the polluted stream. These taxa might represent potential microbial biomarkers of exposure to environmental contaminants in the guts of fish. Confirmation of these findings in other polluted environments might allow the development of a microbiota-based screening approach for environmental evaluation in ecotoxicological studies in aquatic ecosystems.

13.
Antonie Van Leeuwenhoek ; 113(9): 1299-1312, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32577920

RESUMO

Ruminal microorganisms play a pivotal role in cattle nutrition. The discovery of the main microbes or of a microbial community responsible for enhancing the gain of weight in beef cattle might be used in therapeutic approaches to increase animal performance and cause less environmental damages. Here, we examined the differences in bacterial and fungal composition of rumen samples of Braford heifers raised in natural grassland of the Pampa Biome in Brazil. We aimed to detect microbial patterns in the rumen that could be correlated with the gain of weight. We hypothesized that microorganisms important to digestion process are increased in animals with a higher gain of weight. The gain of weight of seventeen healthy animals was monitored for 60 days. Ruminal samples were obtained and the 16S and ITS1 genes were amplified and sequenced to identify the closest microbial relatives within the microbial communities. A predictive model based on microbes responsible for the gain of weight was build and further tested using the entire dataset., The main differential abundant microbes between groups included the bacterial taxa RFN20, Prevotella, Anaeroplasma and RF16 and the fungal taxa Aureobasidium, Cryptococcus, Sarocladium, Pleosporales and Tremellales. The predictive model detected some of these taxa associated with animals with the high gain of weight group, most of them being organisms that have been correlated to the production of substances that improve the ruminal digestion process. These findings provide new insights about cattle nutrition and suggest the use of these microbes to improve beef cattle breeding.


Assuntos
Bactérias/classificação , Bovinos/microbiologia , Fungos/classificação , Microbioma Gastrointestinal , Rúmen/microbiologia , Aumento de Peso , Ração Animal/análise , Animais , Bactérias/genética , Técnicas de Tipagem Bacteriana , Brasil , Bovinos/fisiologia , DNA Bacteriano/genética , DNA Fúngico/genética , Dieta/veterinária , Fezes/química , Fungos/genética , Microbiota , Tipagem Molecular , RNA Ribossômico 16S/genética , Rúmen/metabolismo
14.
Biochimie ; 173: 3-11, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32105814

RESUMO

Classical homocystinuria (HCU) is characterized by increased plasma levels of total homocysteine (tHcy) and methionine (Met). Treatment may involve supplementation of B vitamins and essential amino acids, as well as restricted Met intake. Dysbiosis has been described in some inborn errors of metabolism, but has not been investigated in HCU. The aim of this study was to investigate the gut microbiota of HCU patients on treatment. Six unrelated HCU patients (males = 5, median age = 25.5 years) and six age-and-sex-matched healthy controls (males = 5, median age = 24.5 years) had their fecal microbiota characterized through partial 16S rRNA gene sequencing. Fecal pH, a 3-day dietary record, medical history, and current medications were recorded for both groups. All patients were nonresponsive to pyridoxine and were on a Met-restricted diet and presented with high tHcy. Oral supplementation of folate (n = 6) and pyridoxine (n = 5), oral intake of betaine (n = 4), and IM vitamin B12 supplementation (n = 4), were reported only in the HCU group. Patients had decreased daily intake of fat, cholesterol, vitamin D, and selenium compared to controls (p < 0.05). There was no difference in alpha and beta diversity between the groups. HCU patients had overrepresentation of the Eubacterium coprostanoligenes group and underrepresentation of the Alistipes, Family XIII UCG-001, and Parabacteroidetes genera. HCU patients and controls had similar gut microbiota diversity, despite differential abundance of some bacterial genera. Diet, betaine, vitamin B supplementation, and host genetics may contribute to these differences in microbial ecology.


Assuntos
Disbiose/microbiologia , Microbioma Gastrointestinal , Homocistinúria , Adolescente , Adulto , Betaína/administração & dosagem , Estudos de Casos e Controles , Suplementos Nutricionais , Feminino , Homocistinúria/dietoterapia , Homocistinúria/tratamento farmacológico , Homocistinúria/microbiologia , Humanos , Masculino , Complexo Vitamínico B/administração & dosagem , Adulto Jovem
15.
Braz J Microbiol ; 51(1): 151-159, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31332740

RESUMO

Preterm birth remains the main contributor to early childhood mortality. The vaginal environment, including microbiota composition, might contribute to the risk of preterm delivery. Alterations in the vaginal microbial community structure might represent a risk factor for preterm birth. Here, we aimed to (a) investigate the association between preterm birth and the vaginal microbial community and (b) identify microbial biomarkers for risk of preterm birth. Microbial DNA was isolated from vaginal swabs in a cohort of 69 women enrolled at hospital admission for their delivery. Microbiota was analyzed by high-throughput 16S rRNA sequencing. While no differences in microbial diversity measures appeared associated with the spontaneous preterm and full-term outcomes, the microbial composition was distinct for these groups. Differential abundance analysis showed Lactobacillus species to be associated with full-term birth whereas an unknown Prevotella species was more abundant in the spontaneous preterm group. Although we studied a very miscegenated population from Brazil, our findings were similar to evidence pointed by other studies in different countries. The role of Lactobacillus species as a protector in the vaginal microbiome is demonstrated to be also a protector of spontaneous preterm outcome whereas the presence of pathogenic species, such as Prevotella spp., is endorsed as a factor of risk for spontaneous preterm delivery.


Assuntos
Bactérias/classificação , Microbiota , Trabalho de Parto Prematuro/diagnóstico , Vagina/microbiologia , Adulto , Bactérias/isolamento & purificação , Biomarcadores/análise , Brasil , Estudos de Coortes , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactobacillus/classificação , Trabalho de Parto Prematuro/microbiologia , Gravidez , Prevotella/classificação , Prevotella/patogenicidade , RNA Ribossômico 16S , Fatores de Risco , Adulto Jovem
16.
J Forensic Sci ; 65(1): 259-265, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31411746

RESUMO

DNA is one of the fastest growing tools in forensic sciences, increasing reliability in forensic reports and judgments. The use of DNA has increased in different areas of the forensic sciences, such as investigation of plant species, where plastid DNA has been used to elucidate and generate evidence in cases of traceability of genetically modified and controlled plants. Even with several advances and the practice of using DNA in forensic investigations, there are just few studies related to the identification of genetic tools for the characterization of drug and nondrug-types of Cannabis. Herein, the whole plastomes of two drug-type Cannabis are presented and have their structures compared with other Cannabis plastomes deposited in the GenBank, focusing in the forensic use of plastome sequences. The plastomes of Cannabis sativa "Brazuka" and of the hybrid Cannabis AK Royal Automatic presented general structure that does not differs from the reported for other C. sativa cultivars. A phylogenomic analyses grouped C. sativa "Brazuka" with the nondrug C. sativa cultivars, while the hybrid Cannabis AK Royal Automatic placed isolated, basal to this group. This suggests that the analysis of plastomes is useful toward genetic identification of hybrids in relation to C. sativa.


Assuntos
Cannabis/genética , Genomas de Plastídeos , Plastídeos/genética , DNA de Plantas , Bases de Dados de Ácidos Nucleicos , Ciências Forenses , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Análise de Sequência de DNA
17.
Mol Ecol Resour ; 20(2): 415-428, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31698527

RESUMO

The data used for profiling microbial communities is usually sparse with some microbes having high abundance in a few samples and being nearly absent in others. However, current bioinformatics tools able to deal with this sparsity are lacking. pime (Prevalence Interval for Microbiome Evaluation) was designed to remove those taxa that may be high in relative abundance in just a few samples but have a low prevalence overall. The reliability and robustness of pime were compared against existing methods and tested using 16S rRNA independent data sets. pime filters microbial taxa not shared in a per treatment prevalence interval started at 5% prevalence with increasing increments of 5% at each filtering step. For each prevalence interval, hundreds of decision trees were calculated to predict the likelihood of detecting differences in treatments. The best prevalence-filtered data set was user-selected by choosing the prevalence interval that kept a large portion of the 16S rRNA sequences in the data set while also showing the lowest error rate. To obtain the likelihood of introducing type I error while building prevalence-filtered data sets, an error detection step based was also included. A pime reanalysis of published data sets uncovered other expected microbial associations than previously reported, which may be masked when only relative abundance was considered.


Assuntos
Bactérias/isolamento & purificação , Biologia Computacional/métodos , Microbiota , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética
18.
World J Microbiol Biotechnol ; 35(10): 159, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31602538

RESUMO

The female lower genital tract harbors a complex microbial community essential for homeostasis and health. During pregnancy, the female body undergoes unique hormonal changes that contribute to weight gain as well as modulations in immune function that can affect microbiota composition. Several studies have described the vaginal microbiota of pregnant women from the USA, Europe and Mexico. Here we expand our knowledge about the vaginal microbial communities during the third trimester to healthy expectant Brazilian mothers. Vaginal samples were collected from patients delivering at the Hospital de Clínicas de Porto Alegre, Brazil. Microbial DNA was isolated from samples and the V4 region of the 16S rRNA gene was amplified and sequenced using the PGM Ion Torrent. Brazilian pregnant women presented three distinct types of microbial community at the time of labor. Two microbial communities, Cluster 1 and Cluster 3, presented an overall dominance of Lactobacillus while Cluster 2 tended to present higher diversity and richness, with the presence of Pseudomonas, Prevotella and other vaginosis related bacteria. About half of the Brazilian mothers sampled here had dominance of L. iners. The proportion of mothers without dominance of any Lactobacillus was higher in Brazil (22%) compared to UK (2.4%) and USA, where this community type was not detected. The vaginal microbiota showed significant correlation with the composition of the babies' gut microbiota (p-value = 0.002 with a R2 of 15.8%). Mothers presenting different vaginal microbiota shared different microorganisms with their newborns, which would reflect on initial colonizers of the developing newborns' gut.


Assuntos
Bactérias/classificação , Microbioma Gastrointestinal/fisiologia , Microbiota , Vagina/microbiologia , Adulto , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Brasil , DNA Bacteriano , Europa (Continente) , Feminino , Humanos , Recém-Nascido , Análise Multivariada , Gravidez , RNA Ribossômico 16S/genética , Reino Unido , Adulto Jovem
20.
3 Biotech ; 9(5): 200, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31065500

RESUMO

In this study, the Ion Torrent PGM platform was employed to conduct a whole-genome sequencing analysis of Eugenia uniflora L., aiming to generate new genomic information for this non-model species. The whole-genome set of assembled sequences (WGSAS) generated 2601 contigs, with a cumulative length of 3.15 Mbp. About 2.60% of the WGSAS was characterized by repetitive sequences, while 71.66% of the WGSAS was represented by predicted genes. A total of 147 metabolic pathways related to enzymes characterized in the E. uniflora WGSAS were detected. Proteins related to antifungal activity and to bacterium and fungi defense response as well as transcriptions factors related to abiotic stress responses were also identified. This sequencing provides important genomic resources for future breeding and selection regarding plants with higher production of such metabolites, as well as source of genes for genetic engineering of cultivated species, supporting a wide application of marker-assisted and genomic selection, towards the establishment of commercial orchards with improved cultivars of E. uniflora.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...