Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Care ; 28(1): 2, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166968

RESUMO

Surface electromyography (sEMG) can be used to measure the electrical activity of the respiratory muscles. The possible applications of sEMG span from patients suffering from acute respiratory failure to patients receiving chronic home mechanical ventilation, to evaluate muscle function, titrate ventilatory support and guide treatment. However, sEMG is mainly used as a monitoring tool for research and its use in clinical practice is still limited-in part due to a lack of standardization and transparent reporting. During this round table meeting, recommendations on data acquisition, processing, interpretation, and potential clinical applications of respiratory sEMG were discussed. This paper informs the clinical researcher interested in respiratory muscle monitoring about the current state of the art on sEMG, knowledge gaps and potential future applications for patients with respiratory failure.


Assuntos
Músculo Esquelético , Músculos Respiratórios , Humanos , Eletromiografia , Músculos Respiratórios/fisiologia , Músculo Esquelético/fisiologia
2.
Ann Intensive Care ; 11(1): 167, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34862945

RESUMO

BACKGROUND: Dynamic pulmonary hyperinflation may develop in patients with chronic obstructive pulmonary disease (COPD) due to dynamic airway collapse and/or increased airway resistance, increasing the risk of volutrauma and hemodynamic compromise. The reference standard to quantify dynamic pulmonary hyperinflation is the measurement of the volume at end-inspiration (Vei). As this is cumbersome, the aim of this study was to evaluate if methods that are easier to perform at the bedside can accurately reflect Vei. METHODS: Vei was assessed in COPD patients under controlled protective mechanical ventilation (7 ± mL/kg) on zero end-expiratory pressure, using three techniques in a fixed order: (1) reference standard (Veireference): passive exhalation to atmosphere from end-inspiration in a calibrated glass burette; (2) ventilator maneuver (Veimaneuver): measuring the expired volume during a passive exhalation of 45s using the ventilator flow sensor; (3) formula (Veiformula): (Vt × Pplateau)/(Pplateau - PEEPi), with Vt tidal volume, Pplateau is plateau pressure after an end-inspiratory occlusion, and PEEPi is intrinsic positive end-expiratory pressure after an end-expiratory occlusion. A convenience sample of 17 patients was recruited. RESULTS: Veireference was 1030 ± 380 mL and had no significant correlation with Pplateau (r2 = 0.06; P = 0.3710) or PEEPi (r2 = 0.11; P = 0.2156), and was inversely related with Pdrive (calculated as Pplateau -PEEPi) (r2 = 0.49; P = 0.0024). A low bias but rather wide limits of agreement and fairly good correlations were found when comparing Veimaneuver and Veiformula to Veireference. Vei remained stable during the study period (low bias 15 mL with high agreement (95% limits of agreement from - 100 to 130 mL) and high correlation (r2 = 0.98; P < 0.0001) between both measurements of Veireference). CONCLUSIONS: In patients with COPD, airway pressures are not a valid representation of Vei. The three techniques to quantify Vei show low bias, but wide limits of agreement.

3.
Ann Intensive Care ; 10(1): 67, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32472272

RESUMO

BACKGROUND: Inappropriate ventilator assist plays an important role in the development of diaphragm dysfunction. Ventilator under-assist may lead to muscle injury, while over-assist may result in muscle atrophy. This provides a good rationale to monitor respiratory drive in ventilated patients. Respiratory drive can be monitored by a nasogastric catheter, either with esophageal balloon to determine muscular pressure (gold standard) or with electrodes to measure electrical activity of the diaphragm. A disadvantage is that both techniques are invasive. Therefore, it is interesting to investigate the role of surrogate markers for respiratory dive, such as extradiaphragmatic inspiratory muscle activity. The aim of the current study was to investigate the effect of different inspiratory support levels on the recruitment pattern of extradiaphragmatic inspiratory muscles with respect to the diaphragm and to evaluate agreement between activity of extradiaphragmatic inspiratory muscles and the diaphragm. METHODS: Activity from the alae nasi, genioglossus, scalene, sternocleidomastoid and parasternal intercostals was recorded using surface electrodes. Electrical activity of the diaphragm was measured using a multi-electrode nasogastric catheter. Pressure support (PS) levels were reduced from 15 to 3 cmH2O every 5 min with steps of 3 cmH2O. The magnitude and timing of respiratory muscle activity were assessed. RESULTS: We included 17 ventilated patients. Diaphragm and extradiaphragmatic inspiratory muscle activity increased in response to lower PS levels (36 ± 6% increase for the diaphragm, 30 ± 6% parasternal intercostals, 41 ± 6% scalene, 40 ± 8% sternocleidomastoid, 43 ± 6% alae nasi and 30 ± 6% genioglossus). Changes in diaphragm activity correlated best with changes in alae nasi activity (r2 = 0.49; P < 0.001), while there was no correlation between diaphragm and sternocleidomastoid activity. The agreement between diaphragm and extradiaphragmatic inspiratory muscle activity was low due to a high individual variability. Onset of alae nasi activity preceded the onset of all other muscles. CONCLUSIONS: Extradiaphragmatic inspiratory muscle activity increases in response to lower inspiratory support levels. However, there is a poor correlation and agreement with the change in diaphragm activity, limiting the use of surface electromyography (EMG) recordings of extradiaphragmatic inspiratory muscles as a surrogate for electrical activity of the diaphragm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...