RESUMO
This study investigated the anxiolytic and anticonvulsant effects and safety profile of limonene enantiomers and their oxidized derivatives. The toxicity test was performed by monitoring the animals for 96 hours, with no deaths or significant toxicity observed up to the highest dose, which allowed the determination of the LD50. Doses of 4, 20 and 40 mg/kg were tested, with no toxicity observed up to 96h (LD50 > 40 mg/kg). Anxiolytic activity was measured in a preference test for light and dark areas, and the effect of the compounds was evaluated in the presence of serotonergic antagonists. The (S)-(-)-LIM and (R)-(+)-LIM enantiomers showed anxiolytic effects, with (S)-(-)-LIM being effective at all doses. In the anticonvulsant test, the oxidized derivatives, such as perilyl acid (PAC), significantly delayed PTZ-induced seizures, an effect blocked by flumazenil (FMZ). The oxidized derivatives, especially perilyl acid (PAC), showed anxiolytic effects at all doses and significantly delayed the three PTZ-induced seizure events. This effect was blocked by FMZ, suggesting a relationship between PAC and the GABAergic pathway. PAC, being the most oxidized derivative, was the most effective for both anxiety and delaying seizure progression, suggesting that oxidation of limonene compounds may increase their therapeutic efficacy.
RESUMO
Candida auris, a pathogenic fungus, has posed significant challenges to conventional medical treatments due to its increasing resistance to antifungal agents. Consequently, due to their promising pharmacological properties, there is a compelling interest in exploring novel bioactive compounds, such as phytosterols and triterpenes. This study aimed to conduct virtual screening utilizing computational methods, including ADMET, molecular docking, and molecular dynamics, to assess the activity and feasibility of phytosterols extracted from Cryptostegia grandiflora as potential therapeutic agents. Computational predictions suggest that compounds bearing structural similarities to Fsp3-rich molecules hold promise for inhibiting enzymes and G protein-coupled receptor (GPCR) modulators, with particular emphasis on ursolic acid, which, in its conjugated form, exhibits high oral bioavailability and metabolic stability, rendering it a compelling drug candidate. Molecular docking calculations identified ursolic acid and stigmasterol as promising ligands. While stigmasterol displayed superior affinity during molecular dynamics simulations, it exhibited instability, contrasting with ursolic acid's slightly lower affinity yet sustained stability throughout the dynamic assessments. This suggests that ursolic acid is a robust candidate for inhibiting the FKBP12 isomerase in C. auris. Moreover, further investigations could focus on experimentally validating the molecular docking predictions and evaluating the efficacy of ursolic acid as an FKBP12 isomerase inhibitor in models of C. auris infection.