Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Vis Sci Technol ; 10(5): 2, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-34003977

RESUMO

Purpose: To ascertain the influence of intraocular pressure (IOP) on corneal optical coherence tomography (OCT) speckle in untreated and ultraviolet A-riboflavin induced corneal collagen crosslinked rabbit eyes. Methods: Left corneas of eight rabbits were de-epithelialized and crosslinked by applying riboflavin and 30-minute ultraviolet A light exposure. After enucleation (6 months after treatment), each eyeball (treated and untreated) was mounted in a measurement setup, in which IOP was increased from 15 to 45 mm Hg in steps of 5 mm Hg. At each IOP value, single B-scans of the central cornea were acquired three times with the spectral-domain OCT Copernicus-HR. Then, three regions of interest, including the anterior, posterior, and entire corneal stroma, were automatically extracted. Five different probability distributions were used as a model for the corneal speckle and the one with the best goodness of fit was chosen for further analysis. Results: The generalized gamma distribution achieved the best goodness of fit and its scale (a) and shape (v) parameters statistically significantly changed with increasing IOP in the three regions of analysis (two-way repeated measures analysis of variance, all P < 0.05). The statistically significant difference between untreated and crosslinked eyes was observed for the shape parameters of the posterior and entire corneal stroma. Conclusions: Corneal OCT speckle is influenced by IOP and shows to be significantly different in untreated and crosslinked eyes. Corneal OCT speckle analysis has the potential to be indirectly used for assessing changes in corneal stroma in ex vivo and in vivo studies. Translational Relevance: Investigation of corneal OCT speckle statistics can offer additional diagnostic biomarkers related to changes in the corneal stroma after ocular surgeries.


Assuntos
Pressão Intraocular , Tomografia de Coerência Óptica , Animais , Córnea/diagnóstico por imagem , Substância Própria , Coelhos , Riboflavina
2.
PLoS One ; 15(2): e0228920, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32053692

RESUMO

The purpose of this study was to ascertain the relationships between the amplitude of the corneal pulse (CP) signal and the parameters of corneal biomechanics during ex-vivo intraocular pressure (IOP) elevation experiments on porcine eyes with artificially induced ocular pulse cycles. Two experiments were carried out using porcine eyes. In the first one, a selected eye globe was subjected to three IOP levels (15, 30 and 45 mmHg), where changes in physical ocular pulse amplitude were controlled by infusion/withdrawal volumes (ΔV). In the second experiment, six eyes were subjected to IOP from 15 mmHg to 45 mmHg in steps of 5 mmHg with a constant ΔV, where corneal deformation parameters were measured using Corvis ST. In both experiments, at each IOP, the CP and IOP signals were acquired synchronically using a non-contact ultrasonic distance sensor and a pressure transmitter, respectively. Based on the amplitudes of the CP and IOP signals ocular pulse based corneal rigidity index (OPCRI) was calculated. Results indicate positive correlations between ΔV and the physical ocular pulse amplitude, and between ΔV and the corneal pulse amplitude (both p < 0.001). OPCRI was found to increase with elevated IOP. Furthermore, IOP statistically significantly differentiated changes in OPCRI, the amplitudes of CP and IOP signals and in most of the corneal deformation parameters (p < 0.05). The partial correlation analysis, with IOP as a control variable, revealed a significant correlation between the length of the flattened cornea during the first applanation (A1L) and the corneal pulse amplitude (p = 0.002), and between A1L and OPCRI (p = 0.003). In conclusion, this study proved that natural corneal pulsations, detected with a non-contact ultrasonic technique, reflect pressure-volume dynamics and can potentially be utilized to assess stiffness of the cornea. The proposed new rigidity index could be a simple approach to estimating corneal rigidity.


Assuntos
Córnea/fisiologia , Pressão Intraocular/fisiologia , Tonometria Ocular/métodos , Animais , Fenômenos Biomecânicos , Elasticidade , Glaucoma , Projetos Piloto , Suínos
3.
Exp Eye Res ; 162: 27-36, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28689748

RESUMO

The aim was to ascertain whether the characteristics of the corneal pulse (CP) measured in-vivo in a rabbit eye change after short-term artificial increase of intraocular pressure (IOP) and whether they correlate with corneal biomechanics assessed in-vitro. Eight New Zealand white rabbits were included in this study and were anesthetized. In-vivo experiments included simultaneous measurements of the CP signal, registered with a non-contact method, IOP, intra-arterial blood pressure, and blood pulse (BPL), at the baseline and short-term elevated IOP. Afterwards, thickness of post-mortem corneas was determined and then uniaxial tensile tests were conducted leading to estimates of their Young's modulus (E). At the baseline IOP, backward stepwise regression analyses were performed in which successively the ocular biomechanical, biometric and cardiovascular predictors were separately taken into account. Results of the analysis revealed that the 3rd CP harmonic can be statistically significantly predicted by E and central corneal thickness (Models: R2 = 0.662, p < 0.005 and R2 = 0.832, p < 0.001 for the signal amplitude and power, respectively). The 1st CP harmonic can be statistically significantly predicted by the amplitude and power of the 1st BPL harmonic (Models: R2 = 0.534, p = 0.015 and R2 = 0.509, p < 0.018, respectively). For elevated IOP, non-parametric analysis indicated significant differences for the power of the 1st CP harmonic (Kruskal-Wallis test; p = 0.031) and for the mean, systolic and diastolic blood pressures (p = 0.025, p = 0.019, p = 0.033, respectively). In conclusion, for the first time, the association between parameters of the CP signal in-vivo and corneal biomechanics in-vitro was confirmed. In particular, spectral analysis revealed that higher amplitude and power of the 3rd CP harmonic indicates higher corneal stiffness, while the 1st CP harmonic correlates positively with the corresponding harmonic of the BPL signal.


Assuntos
Córnea/fisiologia , Pressão Intraocular/fisiologia , Animais , Fenômenos Biomecânicos , Modelos Animais , Projetos Piloto , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...