Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36615237

RESUMO

Half-sandwich Ru(II) complexes belong to group of biologically active metallo-compounds with promising antimicrobial and anticancer activity. Herein, we report the synthesis and characterization of arene ruthenium complexes containing benzimidazole moiety, namely, [(η6-p-cymene)RuCl(bimCOO)] (1) and [(η6-p-cymene)RuCl2(bim)] (2) (where bimCOO = benzimidazole-2-carboxylate and bim = 1-H-benzimidazole). The compounds were characterized by 1H NMR, 13C NMR, IR, UV-vis and CV. Molecular structures of the complexes were determined by SC-XRD analysis, and the results indicated the presence of a pseudo-tetrahedral (piano stool) geometry. Interactions in the crystals of the Ru complexes using the Hirshfeld surface analysis were also examined. In addition, the biological studies of the complexes, such as antimicrobial assays (against planktonic and adherent microbes), cytotoxicity and lipophilicity, were performed. Antibacterial activity of the complexes was evaluated against S. aureus, E. coli, P. aeruginosa PAO1 and LES B58. Cytotoxic activity was tested against primary human fibroblasts and adenocarcinoma human alveolar basal epithelial cells. Obtained biological results show that the ruthenium compounds have bacteriostatic activity toward Pseudomonas aeruginosa PAO1 strain and are not toxic to normal cells. A molecular docking study was applied as a predictive source of information about the plausibility of examined structures binding with HSA as a transporting system.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Humanos , Rutênio/química , Simulação de Acoplamento Molecular , Escherichia coli/metabolismo , Staphylococcus aureus/metabolismo , Antineoplásicos/química , Linhagem Celular Tumoral , Antibacterianos/química , Benzimidazóis/farmacologia , Complexos de Coordenação/química
2.
Int J Mol Sci ; 22(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34576276

RESUMO

Antimicrobial resistance is a growing public health concern that requires urgent action. Biofilm-associated resistance to antimicrobials begins at the attachment phase and increases as the biofilms maturate. Hence, interrupting the initial binding process of bacteria to surfaces is essential to effectively prevent biofilm-associated problems. Herein, we have evaluated the antibacterial and anti-biofilm activities of three ruthenium complexes in different oxidation states with 2-pyridin-2-yl-1H-benzimidazole (L1 = 2,2'-PyBIm): [(η6-p-cymene)RuIIClL1]PF6 (Ru(II) complex), mer-[RuIIICl3(CH3CN)L1]·L1·3H2O (Ru(III) complex), (H2L1)2[RuIIICl4(CH3CN)2]2[RuIVCl4(CH3CN)2]·2Cl·6H2O (Ru(III/IV) complex). The biological activity of the compounds was screened against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa strains. The results indicated that the anti-biofilm activity of the Ru complexes at concentration of 1 mM was better than that of the ligand alone against the P. aeruginosa PAO1. It means that ligand, in combination with ruthenium ion, shows a synergistic effect. The effect of the Ru complexes on cell surface properties was determined by the contact angle and zeta potential values. The electric and physical properties of the microbial surface are useful tools for the examined aggregation phenomenon and disruption of the adhesion. Considering that intermolecular interactions are important and largely define the functions of compounds, we examined interactions in the crystals of the Ru complexes using the Hirshfeld surface analysis.


Assuntos
Anti-Infecciosos/farmacologia , Benzimidazóis/química , Biofilmes/efeitos dos fármacos , Desenho de Fármacos , Piridinas/farmacologia , Rutênio/química , Benzimidazóis/metabolismo , Benzimidazóis/farmacologia , Linhagem Celular , Sobrevivência Celular , Complexos de Coordenação/química , Avaliação Pré-Clínica de Medicamentos , Eletroquímica/métodos , Escherichia coli/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Cinética , Ligantes , Testes de Sensibilidade Microbiana , Oxigênio/química , Pseudomonas aeruginosa/efeitos dos fármacos , Piridinas/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície
3.
Int J Mol Sci ; 22(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063691

RESUMO

The constantly growing resistance of bacteria to antibiotics and other antibacterial substances has led us to an era in which alternative antimicrobial therapies are urgently required. One promising approach is to target bacterial pathogens using metal complexes. Therefore, we investigated the possibility of utilizing series of manganese(II) complexes with heteroaromatic ligands: Alcohol, aldehyde, ketone, and carboxylic acid as inhibitors for biofilm formation of Pseudomonas aeruginosa. To complete the series mentioned above, Mn-dipyCO-NO3 with dipyridin-2-ylmethanone (dipyCO) was isolated, and then structurally (single-crystal X-ray analysis) and physicochemically characterized (FT-IR, TG, CV, magnetic susceptibility). The antibacterial activity of the compounds against representative Gram-negative and Gram-positive bacteria was also evaluated. It is worth highlighting that the results of the cytotoxicity assays performed (MTT, DHI HoloMonitorM4) indicate high cell viability of the human fibroblast (VH10) in the presence of the Mn(II) complexes. Additionally, the inhibition effect of catalase activity by the complexes was studied. This paper focused on such aspects as studying different types of intermolecular interactions in the crystals of the Mn(II) complexes as well as their possible effect on anti-biofilm activity, the structure-activity relationship of the Mn(II) complexes, and regularity between the electrochemical properties of the Mn(II) complexes and anti-biofilm activity.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Complexos de Coordenação/química , Manganês/química , Álcoois/química , Aldeídos/química , Antibacterianos/química , Ácidos Carboxílicos/química , Complexos de Coordenação/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Cetonas/química , Testes de Sensibilidade Microbiana , Oxirredução/efeitos dos fármacos , Pseudomonas aeruginosa , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Molecules ; 25(21)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114511

RESUMO

With increasing antimicrobial resistance there is an urgent need for new strategies to control harmful biofilms. In this study, we have investigated the possibility of utilizing ruthenium(IV) complexes (H3O)2(HL1)2[RuCl6]·2Cl·2EtOH (1) and [RuCl4(CH3CN)2](L32)·H2O (2) (where L1-2-hydroxymethylbenzimadazole, L32-1,4-dihydroquinoxaline-2,3-dione) as effective inhibitors for biofilms formation. The biological activities of the compounds were explored using E. coli, S. aureus, P. aeruginosa PAO1, and P. aeruginosa LES B58. The new chloride ruthenium complexes were characterized by single-crystal X-ray diffraction analysis, Hirshfeld surface analysis, FT-IR, UV-Vis, magnetic and electrochemical (CV, DPV) measurements, and solution conductivity. In the obtained complexes, the ruthenium(IV) ions possess an octahedral environment. The intermolecular classical and rare weak hydrogen bonds, and π···π stacking interactions significantly contribute to structure stabilization, leading to the formation of a supramolecular assembly. The microbiological tests have shown complex 1 exhibited a slightly higher anti-biofilm activity than that of compound 2. Interestingly, electrochemical studies have allowed us to determine the relationship between the oxidizing properties of complexes and their biological activity. Probably the mechanism of action of 1 and 2 is associated with generating a cellular response similar to oxidative stress in bacterial cells.


Assuntos
Bactérias/efeitos dos fármacos , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Rutênio/química , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Dano ao DNA/efeitos dos fármacos , DNA Glicosilases/antagonistas & inibidores , Eletroquímica , Modelos Moleculares , Conformação Molecular
5.
Chem Biodivers ; 16(11): e1900403, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31515947

RESUMO

The antibacterial and antibiofilm activities of two new ruthenium complexes against E. coli, S. aureus, P. aeruginosa PAO1 (laboratory strain) and P. aeruginosa LES B58 (clinical strain) were evaluated. Complexes, mer-[RuIII (2-bimc)3 ] ⋅ H2 O (1) and cis-[RuIV Cl2 (2,3-pydcH)2 ] ⋅ 4H2 O (2), were obtained using aromatic carboxylic acid ligands, namely, 1H-benzimidazole-2-carboxylic acid (2-bimcH) and pyridine-2,3-dicarboxylic acid (2,3-pydcH2 ). Compounds were physicochemically characterized using X-ray diffraction, Hirshfeld surface analysis, IR and UV/VIS spectroscopies, as well as magnetic and electrochemical measurements. Structural characterization revealed that Ru(III) and Ru(IV) ions in the complexes adopt a distorted octahedral geometry. The intermolecular classical and weak hydrogen bonds, and π⋅⋅⋅π contacts significantly contribute to structure stabilization, leading to the formation of a supramolecular assembly. Biological studies have shown that the Ru complexes inhibit the growth of bacteria and biofilm formation by the tested strains and the complexes seem to be a potential as antimicrobial agents.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Ácidos Carboxílicos/farmacologia , Compostos Organometálicos/farmacologia , Rutênio/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Ácidos Carboxílicos/química , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Pseudomonas aeruginosa/efeitos dos fármacos , Rutênio/química , Staphylococcus aureus/efeitos dos fármacos
6.
Biofouling ; 35(1): 59-74, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30727772

RESUMO

Pseudomonas aeruginosa biofilm-associated infections are a serious medical problem, and new compounds and therapies acting through novel mechanisms are much needed. Herein, the authors report a ruthenium(IV) complex that reduces P. aeruginosa PAO1 biofilm formation by 84%, and alters biofilm morphology and the living-to-dead cell ratio at 1 mM concentration. Including the compound in the culture medium altered the pigments secreted by PAO1, and fluorescence spectra revealed a decrease in pyoverdine. Scanning electron microscopy showed that the ruthenium complex did not penetrate the bacterial cell wall, but accumulated on external cell structures. Fluorescence quenching experiments indicated strong binding of the ruthenium complex to both plasmid DNA and bovine serum albumin. Formamidopyrimidine DNA N-glycosylase (Fpg) protein digestion of plasmid DNA isolated after ruthenium(IV) complex treatment revealed the generation of oxidative stress, which was further proved by the observed upregulation of catalase and superoxide dismutase gene expression.


Assuntos
Benzimidazóis/farmacologia , Biofilmes/efeitos dos fármacos , Estresse Oxidativo , Pseudomonas aeruginosa/efeitos dos fármacos , Rutênio/farmacologia , Sideróforos/química , Animais , Sítios de Ligação , Bovinos , Parede Celular/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Varredura , Modelos Teóricos , Oligopeptídeos , Plasmídeos/metabolismo , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/fisiologia , Soroalbumina Bovina/química
7.
Arch Microbiol ; 196(3): 169-77, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24481535

RESUMO

Proteus mirabilis is a pathogenic gram-negative bacterium that frequently causes kidney infections, typically established by ascending colonization of the urinary tract. The present study is focused on ureolytic activity and urease inhibition in biofilms generated by P. mirabilis O18 cells. Confocal microscopy revealed morphological alterations in biofilms treated with urea and a urease inhibitor (acetohydroxamic acid, AHA), as some swarmer cells were found to protrude from the biofilm. The presence of a quorum-sensing molecule (N-butanoyl homoserine lactone, BHL) increased biofilm thickness and its ureolytic activity. Laser interferometric determination of diffusion showed that urea easily diffuses through P. mirabilis biofilm, while AHA is blocked. This may suggest that the use of urease inhibitors in CAUTIs may by less effective than in other urease-associated infections. Spectroscopic studies revealed differences between biofilm and planktonic cells indicating that polysaccharides and nucleic acids are involved in extracellular matrix and biofilm formation.


Assuntos
4-Butirolactona/análogos & derivados , Biofilmes/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Ácidos Hidroxâmicos/farmacologia , Proteus mirabilis/efeitos dos fármacos , Proteus mirabilis/fisiologia , 4-Butirolactona/farmacologia , Proteus mirabilis/enzimologia , Espectroscopia de Infravermelho com Transformada de Fourier , Ureia/metabolismo , Urease/metabolismo
8.
Dalton Trans ; 42(17): 6092-101, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23381742

RESUMO

The reactions of a mother solution of RuCl(3) with benzimidazole derivatives 2-(2'-pyridyl)benzimidazole (2,2'-PyBIm, L(1)) and 2-hydroxymethylbenzimidazole (2-CH(2)OHBIm, L(2)) yielded three novel ruthenium complexes: (H(2)L(1))(2)[Ru(III)Cl(4)(CH(3)CN)(2)](2)[Ru(IV)Cl(4)(CH(3)CN)(2)]·2Cl·6H(2)O (1), mer-[Ru(III)Cl(3)L(1)(CH(3)CN)]·L(1)·3H(2)O (2), and (HL(2))(4)[Ru(IV)Cl(6)]·2Cl·4H(2)O (3). The isolated compounds were characterised by elemental analyses, UV-Vis and IR spectroscopy, and magnetic measurements. The nature of the ligands bound to the metal ions of these compounds and the experimental conditions significantly influenced the ruthenium complexes in different oxidation states. The N,N-donor ligand bound to the metal centre is a recognised stabiliser of the +III state of ruthenium, whereas the lack of ligand coordination promotes the formation of a mixed (Ru(III)/Ru(IV)) complex. In the case of complex 3, the absence of a N,O-donor ligand in the coordinate sphere facilitates the formation of the compound in a higher oxidation state. X-ray single crystal analyses revealed an octahedral geometry in each of the complexes. The crystal structure of ruthenium complexes is formed by a network of intermolecular classical and unconventional (C-H···π) hydrogen bonds. The most interesting feature of the supramolecular architecture of complexes is the existence of a very rare Cl(-)···π interaction and π···π stacking, which also contribute to structural stabilisation. Ruthenium compounds 2 and 3 behave as paramagnets with an octahedral geometry, corresponding to the presence of one or two unpaired electrons, respectively. The cyclic voltammetric data of complex 2 show three one-electron redox processes. The first redox couple is reversible, whereas the two other couples have a quasi-reversible nature. In the case of complex 3, two redox couples are reversible and the electrode processes are connected with exchange of one electron.


Assuntos
Complexos de Coordenação/síntese química , Rutênio/química , Benzimidazóis/química , Complexos de Coordenação/química , Cristalografia por Raios X , Técnicas Eletroquímicas , Ligação de Hidrogênio , Magnetismo , Conformação Molecular , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...