Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Med (Berl) ; 93(4): 413-25, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25394677

RESUMO

UNLABELLED: The mechanisms responsible for how resveratrol inhibits pathological left ventricular hypertrophy (LVH) but not physiological LVH have not been elucidated. Herein, we show that in rat cardiomyocytes, lower concentrations of resveratrol (0.1 and 1 µM) are efficient at selectively inhibiting important regulators involved in pathological LVH (such as nuclear factor of activated T cells (NFAT)) while not affecting pathways involved in physiological LVH (Akt and p70S6 kinase (p70S6K)). These differential responses are also observed in both mouse and rat models of in vivo physiological and pathological LVH. Interestingly, in all of the experiments involving a low concentration of resveratrol (1 µM), the observed effects on Akt, p70S6K, and NFAT were independent from AMP-activated protein kinase (AMPK) activation while these effects at higher concentrations of resveratrol (50 µM) were potentiated by AMPK activation. In summary, we show that resveratrol can concentration/dose selectively inhibit various pro-hypertrophic signaling pathways and that resveratrol has differential effects on the modification of these signaling cascades in response to pathological stimuli versus physiological stimuli. This has important clinical implications as our findings support the concept that resveratrol may be useful in the selective treatment of pathological LVH. KEY MESSAGE: Resveratrol differentially regulates pathological and physiological cardiac hypertrophy. Resveratrol dose selectively inhibits pathological cardiac signaling pathways. Resveratrol inhibits NFAT-dependent transcription. At low concentrations, effects of resveratrol are AMPK-independent. Resveratrol may be used to selectively treat pathological cardiac hypertrophy.


Assuntos
Antioxidantes/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Hipertrofia Ventricular Esquerda/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Estilbenos/farmacologia , Função Ventricular/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Células Cultivadas , Exercício Físico , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Humanos , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fatores de Transcrição NFATC/metabolismo , Ratos , Resveratrol , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos
2.
Am J Physiol Endocrinol Metab ; 305(2): E243-53, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23695218

RESUMO

Because doxorubicin (DOX)-containing chemotherapy causes left ventricular (LV) dysfunction and remodeling that can progress to heart failure, strategies to alleviate DOX cardiotoxicity are necessary to improve health outcomes of patients surviving cancer. Although clinical evidence suggests that aerobic exercise training (ET) can prevent cardiotoxicity in patients undergoing DOX chemotherapy, the physiological mechanisms involved have not been extensively studied, nor is it known whether compounds [such as resveratrol (RESV)] have similar beneficial effects. With the use of a murine model of chronic DOX exposure, this study compared the efficacy of modest ET to RESV treatment on exercise performance, LV remodeling, and oxidative stress resistance. Mice were divided into four groups that received saline, DOX (8 mg/kg ip, one time per week), DOX + RESV (4 g/kg diet, ad libitum), and DOX + ET (45 min of treadmill exercise, 5 days/wk) for 8 wk. LV function and morphology were evaluated by in vivo echocardiography. DOX caused adverse LV remodeling that was partially attenuated by modest ET and completely prevented by RESV. These effects were paralleled by improvements in exercise performance. The cardioprotective properties of ET and RESV were associated with reduced levels of atrial natriuretic peptide and the lipid peroxidation by-product, 4-hydroxy-2-nonenal. In addition, ET and RESV increased the expression of cardiac sarcoplasmic/endoplasmic reticulum calcium-ATPase 2a, superoxide dismutase, mitochondrial electron transport chain complexes, and mitofusin-1 and -2 in mice administered DOX. Compared with modest ET, RESV more effectively prevented DOX-induced LV remodeling and was associated with the reduction of DOX-induced oxidative stress. Our findings have important implications for protecting patients against DOX-associated cardiac injury.


Assuntos
Antibióticos Antineoplásicos/antagonistas & inibidores , Antibióticos Antineoplásicos/toxicidade , Antioxidantes/farmacologia , Doxorrubicina/antagonistas & inibidores , Doxorrubicina/toxicidade , Cardiopatias/induzido quimicamente , Cardiopatias/prevenção & controle , Condicionamento Físico Animal/fisiologia , Estilbenos/farmacologia , Animais , Biomarcadores/metabolismo , Pressão Sanguínea/fisiologia , Western Blotting , Suplementos Nutricionais , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Feminino , GTP Fosfo-Hidrolases/metabolismo , Cardiopatias/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Resveratrol , Disfunção Ventricular Esquerda/induzido quimicamente , Disfunção Ventricular Esquerda/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...