Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 111(4): 700-709, 2016 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-27558714

RESUMO

The HIV gp41 ectodomain (e-gp41) is an attractive target for the development of vaccines and drugs against HIV because of its crucial role in viral fusion to the host cell. However, because of the high insolubility of e-gp41, most biophysical and structural analyses have relied on the production of truncated versions removing the loop region of gp41 or the utilization of nonphysiological solubilizing conditions. The loop region of gp41 is also known as principal immunodominant domain (PID) because of its high immunogenicity, and it is essential for gp41-mediated HIV fusion. In this study we identify the aggregation-prone regions of the amino acid sequence of the PID and engineer a highly soluble mutant that preserves the trimeric structure of the wild-type e-gp41 under physiological pH. Furthermore, using a reverse mutagenesis approach, we analyze the role of mutated amino acids upon the physicochemical factors that govern solubility of e-gp41. On this basis, we propose a molecular model for e-gp41 self-association, which can guide the production of soluble e-gp41 mutants for future biophysical analyses and biotechnological applications.


Assuntos
Fenômenos Químicos , Proteína gp41 do Envelope de HIV/química , Sequência de Aminoácidos , Proteína gp41 do Envelope de HIV/genética , Modelos Moleculares , Mutação , Domínios Proteicos , Solubilidade
2.
Proc Natl Acad Sci U S A ; 111(51): 18207-12, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25489108

RESUMO

During HIV-1 fusion to the host cell membrane, the N-terminal heptad repeat (NHR) and the C-terminal heptad repeat (CHR) of the envelope subunit gp41 become transiently exposed and accessible to fusion inhibitors or Abs. In this process, the NHR region adopts a trimeric coiled-coil conformation that can be a target for therapeutic intervention. Here, we present an approach to rationally design single-chain protein constructs that mimic the NHR coiled-coil surface. The proteins were built by connecting with short loops two parallel NHR helices and an antiparallel one with the inverse sequence followed by engineering of stabilizing interactions. The constructs were expressed in Escherichia coli, purified with high yield, and folded as highly stable helical coiled coils. The crystal structure of one of the constructs confirmed the predicted fold and its ability to accurately mimic an exposed gp41 NHR surface. These single-chain proteins bound to synthetic CHR peptides with very high affinity, and furthermore, they showed broad inhibitory activity of HIV-1 fusion on various pseudoviruses and primary isolates.


Assuntos
Fármacos Anti-HIV/farmacologia , Proteína gp41 do Envelope de HIV/química , Mimetismo Molecular , Fenômenos Biofísicos , Cristalografia por Raios X , Escherichia coli/genética , Proteína gp41 do Envelope de HIV/genética , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...