Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 23(15): 3388-3404, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37337817

RESUMO

Trauma-induced Alzheimer's disease (AD) is rapidly emerging as a major consequence of traumatic brain injuries (TBI), with devastating social and economic impacts. Unfortunately, few treatment options are currently available due to a limited understanding of the underlying mechanisms. A clinically-relevant, in vitro experimental model that emulates in vivo scenarios with high levels of spatial and temporal resolution is critical for demystifying the pathways of post-TBI AD. Using a unique, recently established "TBI-on-a-chip" system with murine cortical networks, we demonstrate the correlative elevation of oxidative stress (acrolein), inflammation (TNF-α), and Aß42 aggregation, with concomitant reduction of neuronal network electrical activity post-concussive impact. These findings confirm that TBI-on-a-chip could provide a novel paradigm to supplement in vivo studies of trauma, while simultaneously validating the interaction of these alleged, key-pathological factors in post-TBI AD development. Specifically, we have shown that acrolein, acting as a diffusive factor of secondary injury, is both critical and sufficient in promoting inflammation (TNF-α) and Aß42 aggregation, two known contributors of AD pathogenesis. Furthermore, using a cell-free preparation with TBI-on-a-chip, we have confirmed that both force and acrolein can independently and directly stimulate the aggregation of purified Aß42, highlighting the key capabilities of primary and secondary injury mechanisms towards inducing Aß42 aggregation, independently and synergistically. In addition to morphological and biochemical assessment, we also demonstrate parallel monitoring of neuronal network activity, further validating the chief pathological role of acrolein in not only inflicting biochemical abnormalities, but also functional deficits in neuronal networks. In conclusion, through this line of investigations, we have shown that by recapitulating clinically-relevant events, the TBI-on-a-chip device is capable of quantitatively characterizing parallel force-dependent increases in oxidative stress, inflammation, protein aggregation, and network activity, offering a unique platform for mechanistic investigations of post-TBI AD, and trauma-induced neuronal injury in general. It is expected that this model could provide crucial insights into pathological mechanisms which will be critical in developing novel, effective diagnostics and treatment strategies that significantly benefit TBI victims.


Assuntos
Doença de Alzheimer , Lesões Encefálicas Traumáticas , Camundongos , Animais , Peptídeos beta-Amiloides , Acroleína , Fator de Necrose Tumoral alfa , Lesões Encefálicas Traumáticas/patologia , Dispositivos Lab-On-A-Chip , Inflamação/complicações
2.
Sci Rep ; 12(1): 11838, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35821510

RESUMO

While clinical observations have confirmed a link between the development of neurodegenerative diseases and traumatic brain injuries (TBI), there are currently no treatments available and the underlying mechanisms remain elusive. In response, we have developed an in vitro pendulum trauma model capable of imparting rapid acceleration injuries to neuronal networks grown on microelectrode arrays within a clinically relevant range of g forces, with real-time electrophysiological and morphological monitoring. By coupling a primary physical insult with the quantification of post-impact levels of known biochemical pathological markers, we demonstrate the capability of our system to delineate and investigate the primary and secondary injury mechanisms leading to post-impact neurodegeneration. Specifically, impact experiments reveal significant, force-dependent increases in the pro-inflammatory, oxidative stress marker acrolein at 24 h post-impact. The elevation of acrolein was augmented by escalating g force exposures (30-200 g), increasing the number of rapidly repeated impacts (4-6 s interval, 3, 5 and 10×), and by exposing impacted cells to 40 mM ethanol, a known comorbidity of TBI. The elevated levels of acrolein following multiple impacts could be reduced by increasing time-intervals between repeated hits. In addition, we show that conditioned media from maximally-impacted cultures can cause cellular acrolein elevation when introduced to non-impact, control networks, further solidifying acrolein's role as a diffusive-factor in post-TBI secondary injuries. Finally, morphological data reveals post-impact acrolein generation to be primarily confined to soma, with some emergence in cellular processes. In conclusion, this novel technology provides accurate, physical insults with a unique level of structural and temporal resolution, facilitating the investigation of post-TBI neurodegeneration.


Assuntos
Acroleína , Lesões Encefálicas Traumáticas , Aceleração , Humanos , Dispositivos Lab-On-A-Chip , Exame Físico
3.
Sci Rep ; 9(1): 14994, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628381

RESUMO

An enigma of mild traumatic brain injury are observations of substantial behavior and performance deficits in the absence of bleeding or other observable structural damage. Altered behavior and performance reflect changes in action potential (AP) patterns within neuronal networks, which could result from subtle subcellular responses that affect synaptic efficacy and AP production. The aim of this study was to investigate and quantify network activity changes after simulated concussions in vitro and therewith develop a platform for simultaneous and direct observations of morphological and electrophysiological changes in neural networks. We used spontaneously active networks grown on microelectrode arrays (MEAs) to allow long-term multisite monitoring with simultaneous optical observations before and after impacts delivered by a ballistic pendulum (30 to 300 g accelerations). The monitoring of AP waveshape templates for long periods before and after impact provided an internal control for cell death or loss of cell-electrode coupling in the observed set of neurons. Network activity patterns were linked in real-time to high power phase contrast microscopy. There was no overt loss of glial or neuronal adhesion, even at high-g impacts. All recording experiments showed repeatable spike production responses: a loss of activity with recovery to near reference in 1 hr, followed by a slow activity decay to a stable, level plateau approximately 30-40% below reference. The initial recovery occurred in two steps: a rapid return of activity to an average 24% below reference, forming a level plateau lasting from 5 to 20 min, followed by a climb to within 10% of reference where a second plateau was established for 1 to 2 hrs. Cross correlation profiles revealed changes in firing hierarchy as well as in Phase 1 in spontaneous network oscillations that were reduced by as much as 20% 6-8 min post impact with only a partial recovery at 30 min. We also observed that normally stable nuclei developed irregular rotational motion after impact in 27 out of 30 networks. The evolution of network activity deficits and recovery can be linked with microscopically observable changes in the very cells that are generating the activity. The repeatable electrophysiological impact response profiles and oscillation changes can provide a quantitative basis for systematic evaluations of pharmacological intervention strategies. Future expansion to include fluorescent microscopy should allow detailed investigations of damage mechanisms on the subcellular level.


Assuntos
Potenciais de Ação , Engenharia Biomédica/métodos , Lesões Encefálicas Traumáticas/fisiopatologia , Rede Nervosa/fisiopatologia , Neurônios/metabolismo , Animais , Morte Celular , Células Cultivadas , Lobo Frontal/citologia , Camundongos , Camundongos Endogâmicos ICR , Microeletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...