Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Toxicol Environ Health A ; 71(17): 1216-21, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18636393

RESUMO

Epidemiological and animal toxicity studies have raised concerns regarding possible adverse health effects of disinfection by-products (DBPs) found in drinking water. The classes and concentrations of DBPs are influenced by the choice of disinfection process (e.g., chlorination, ozonation) as well as source water characteristics (e.g., pH, total organic carbon, bromide content). Disinfected waters were found to contain more than 500 compounds, many of which remain unidentified. Therefore, a "whole-mixture" approach was used to evaluate the toxic potential of alternative disinfection scenarios. An in vivo developmental toxicity screen was used to evaluate the adverse developmental effects of the complex mixtures produced by two different disinfection processes. Water was obtained from East Fork Lake, Ohio; spiked with iodide and bromide; and disinfected either by chlorination or by ozonation/postchlorination, producing finished drinking water suitable for human consumption. These waters were concentrated approximately 130-fold by reverse osmosis membrane techniques. To the extent possible, volatile DBPs lost in the concentration process were spiked back into the concentrates. These concentrates were then provided as drinking water to Sprague-Dawley rats on gestation days 6-16; controls received boiled, distilled, deionized water. The dams (19-20 per group) were allowed to deliver and their litters were examined on postnatal days (PD) 1 and 6. All dams delivered normally, with parturition occurring significantly earlier in the ozonation/postchlorination group. However, no effects on prenatal survival, postnatal survival, or pup weight were evident. Skeletal examination of the PD-6 pups also revealed no treatment effects. Thus, approximately 130-fold higher concentrates of both ozonated/postchlorinated and chlorinated water appeared to exert no adverse developmental effects in this study.


Assuntos
Desinfetantes/toxicidade , Desenvolvimento Fetal/efeitos dos fármacos , Halogenação , Ozônio/toxicidade , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos , Abastecimento de Água , Animais , Peso Corporal/efeitos dos fármacos , Feminino , Masculino , Nível de Efeito Adverso não Observado , Gravidez , Ratos , Ratos Sprague-Dawley
2.
Reprod Toxicol ; 22(3): 443-8, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16527447

RESUMO

The haloacetic acids (HAAs) are a family of xenobiotics found in tap water as a result of drinking water disinfection. Administration of HAAs to rats produces a variety of adverse effects, including developmental toxicity. The dysmorphogenic potencies of all nine bromo/chloro-acetic acids have been determined in rodent whole embryo culture using standard 26-h exposure. Since the half-lives of the HAAs in vivo are typically <8 h, the developmental effects of short-term exposures to dihaloacetates were evaluated. Gestation day 8 (3-6 somite pairs) CD-1 mouse conceptuses were exposed to 11,000 microM dichloroacetic acid (DCA), 300 microM dibromoacetic acid (DBA) or 300 microM bromochloroacetic acid (BCA) for culture periods of 1, 3, 6 or 26 h. Following 1, 3 or 6 h of exposure to HAAs, conceptuses were transferred to control medium to complete a 26-h culture period. The amounts of HAAs present in embryos after 1, 3 and 6h of exposure were determined. Increased incidences of dysmorphic embryos were produced by 6 or 26-h exposures to DCA; a 26-h exposure to DBA; or 3, 6 or 26-h exposures to BCA. The dysmorphology produced was dependent upon the length of exposure and chemical. The embryonic concentration of each HAA (104.5, 2.5 and 2.6 pmol/microg protein for DCA, DBA and BCA, respectively) was reached by 1h of exposure and did not change at the subsequent time points examined. The current studies demonstrate that BCA is more potent than DBA or DCA at disrupting embryogenesis since shorter exposures alter morphogenesis. Since the embryonic HAA concentrations were the same at the three time points measured, the time-dependence in dysmorphogenesis does not appear to be a simple function of increasing embryonic concentration of these chemicals. These studies demonstrate that for these dihaloacetic acids relatively high concentrations and long exposures are needed to alter rodent development in vitro.


Assuntos
Anormalidades Induzidas por Medicamentos , Acetatos/toxicidade , Ácido Dicloroacético/toxicidade , Embrião de Mamíferos/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Acetatos/metabolismo , Animais , Ácido Dicloroacético/metabolismo , Técnicas de Cultura Embrionária , Embrião de Mamíferos/metabolismo , Camundongos , Fatores de Tempo , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...