Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 64(10): 6802-6813, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33974422

RESUMO

Coagulation factor XI (FXI) has emerged as a promising target for the development of safer anticoagulation drugs that limit the risk of severe and life-threatening bleeding. Herein, we report the first cyclic peptide-based FXI inhibitor that selectively and potently inhibits activated FXI (FXIa) in human and animal blood. The cyclic peptide inhibitor (Ki = 2.8 ± 0.5 nM) achieved anticoagulation effects that are comparable to that of the gold standard heparin applied at a therapeutic dose (0.3-0.7 IU/mL in plasma) but with a substantially broader estimated therapeutic range. We extended the plasma half-life of the peptide via PEGylation and demonstrated effective FXIa inhibition over extended periods in vivo. We validated the anticoagulant effects of the PEGylated inhibitor in an ex vivo hemodialysis model with human blood. Our work shows that FXI can be selectively targeted with peptides and provides a promising candidate for the development of a safe anticoagulation therapy.


Assuntos
Anticoagulantes/química , Fator XIa/antagonistas & inibidores , Peptídeos Cíclicos/química , Sequência de Aminoácidos , Animais , Anticoagulantes/metabolismo , Anticoagulantes/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Fator XIa/metabolismo , Meia-Vida , Humanos , Isomerismo , Modelos Biológicos , Tempo de Tromboplastina Parcial , Biblioteca de Peptídeos , Peptídeos Cíclicos/metabolismo , Peptídeos Cíclicos/farmacologia , Polietilenoglicóis/química , Coelhos , Diálise Renal
2.
Acc Chem Res ; 54(3): 618-631, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33228351

RESUMO

Here we provide a personal account of innovation and design principles underpinning a method to interrogate precision electrophile signaling that has come to be known as "REX technologies". This Account is framed in the context of trying to improve methods of target mining and understanding of individual target-ligand engagement by a specific natural electrophile and the ramifications of this labeling event in cells and organisms. We start by explaining from a practical standpoint why gleaning such understanding is critical: we are constantly assailed by a battery of electrophilic molecules that exist as a consequence of diet, food preparation, ineluctable endogenous metabolic processes, and potentially disease. The resulting molecules, which are detectable in the body, appear to be able to modify function of specific proteins. Aside from potentially being biologically relevant in their own right, these labeling events are essentially identical to protein-covalent drug interactions. Thus, on what proteins and even in what ways a covalent drug will work can be understood through the eyes of natural electrophiles; extending this logic leads to the postulate that target identification of specific electrophiles can inform on drug design. However, when we entered this field, there was no way to interrogate how a specific labeling event impacted a specific protein in an unperturbed cell. Methods to evaluate stoichiometry of labeling, and even chemospecificity of a specific phenotype were limited. There were further no generally accepted ways to study electrophile signaling that did not hugely disturb physiology.We developed T-REX, a method to study single-protein-specific electrophile engagement, to interrogate how single-protein electrophile labeling shapes pathway flux. Using T-REX, we discovered that labeling of several proteins by a specific electrophile, even at low occupancy, leads to biologically relevant signaling outputs. Further experimentation using T-REX showed that in some instances, single-protein isoforms were electrophile responsive against other isoforms, such as Akt3. Selective electrophile-labeling of Akt3 elicited inhibition of Akt-pathway flux in cells and in zebrafish embryos. Using these data, we rationally designed a molecule to selectively target Akt3. This was a fusion of the naturally derived electrophile and an isoform-nonspecific, reversible Akt inhibitor in phase-II trials, MK-2206. The resulting molecule was a selective inhibitor of Akt3 and was shown to fare better than MK-2206 in breast cancer xenograft mouse models. Recently, we have also developed a means to screen electrophile sensors that is unbiased and uses a precise burst of electrophiles. Using this method, dubbed G-REX, in conjunction with T-REX, we discovered new DNA-damage response upregulation pathways orchestrated by simple natural electrophiles. We thus emphasize how deriving a quantitative understanding of electrophile signaling that is linked to thorough and precise mechanistic studies can open doors to numerous medicinally and biologically relevant insights, from gleaning better understanding of target engagement and target mining to rational design of targeted covalent medicines.


Assuntos
Preparações Farmacêuticas/química , Proteínas Proto-Oncogênicas c-akt/química , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Portadores de Fármacos/química , Avaliação Pré-Clínica de Medicamentos , Feminino , Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/metabolismo , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Humanos , Ligantes , Camundongos , Oxidantes/química , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...