Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(6): e0300323, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37796003

RESUMO

IMPORTANCE: This work has global significance in the catfish industry, which provides food for increasing global populations. E. ictaluri is a leading cause of disease loss, and EseN is an important player in E. ictaluri virulence. The E. ictaluri T3SS effector EseN plays an essential role in establishing infection, but the specific role EseN plays is not well characterized. EseN belongs to a family of phosphothreonine lyase effectors that specifically target host mitogen activated protein kinase (MAPK) pathways important in regulating host responses to infection. No phosphothreonine lyase equivalents are known in eukaryotes, making this family of effectors an attractive target for indirect narrow-spectrum antibiotics. Targeting of major vault protein and PDK1 kinase by EseN has not been reported in EseN homologs in other pathogens and may indicate unique functions of E. ictaluri EseN. EseN targeting of PDK1 is particularly interesting in that it is linked to an extraordinarily diverse group of cellular functions.


Assuntos
Infecções por Enterobacteriaceae , Doenças dos Peixes , Liases , Animais , Edwardsiella ictaluri/fisiologia , Fosfotreonina , Sistema de Sinalização das MAP Quinases , Macrófagos , Morte Celular
2.
mSphere ; 1(3)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303737

RESUMO

Edwardsiella ictaluri, a major pathogen in channel catfish aquaculture, encodes a type III secretion system (T3SS) that is essential for intracellular replication and virulence. Previous work identified three putative T3SS effectors in E. ictaluri, and in silico analysis of the E. ictaluri genome identified six additional putative effectors, all located on the chromosome outside the T3SS pathogenicity island. To establish active translocation by the T3SS, we constructed translational fusions of each effector to the amino-terminal adenylate cyclase (AC) domain of the Bordetella pertussis adenylate cyclase toxin CyaA. When translocated through the membrane of the Edwardsiella-containing vacuole (ECV), the cyclic AMP produced by the AC domain in the presence of calmodulin in the host cell cytoplasm can be measured. Results showed that all nine effectors were translocated from E. ictaluri in the ECV to the cytoplasm of the host cells in the wild-type strain but not in a T3SS mutant, indicating that translocation is dependent on the T3SS machinery. This confirms that the E. ictaluri T3SS is similar to the Salmonella pathogenicity island 2 T3SS in that it translocates effectors through the membrane of the bacterial vacuole directly into the host cell cytoplasm. Additional work demonstrated that both initial acidification and subsequent neutralization of the ECV were necessary for effector translocation, except for two of them that did not require neutralization. Single-gene mutants constructed for seven of the individual effectors were all attenuated for replication in CCO cells, but only three were replication deficient in head kidney-derived macrophages (HKDM). IMPORTANCE The bacterial pathogen Edwardsiella ictaluri causes enteric septicemia of catfish (ESC), an economically significant disease of farm-raised channel catfish. Commercial catfish production accounts for the majority of the total fin fish aquaculture in the United States, with almost 300,000 tons produced annually, and ESC is the leading cause of disease loss in the industry. We have demonstrated the survival and replication of E. ictaluri within channel catfish cells and identified a secretion system that is essential for E. ictaluri intracellular replication and virulence. We have also identified nine proteins encoded in the E. ictaluri genome that we believe are actively transferred from the bacterium to the cytoplasm of the host cell and act to manipulate host cell physiology to the advantage of the bacterium. The data presented here confirm that the proteins are actually transferred during an infection, which will lead to further work on approaches to preventing or controlling ESC.

3.
Infect Immun ; 82(6): 2329-36, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24664505

RESUMO

Previous in vitro work demonstrated that Edwardsiella ictaluri produces an acid-activated urease that can modulate environmental pH through the production of ammonia from urea. Additional work revealed that expression of the E. ictaluri type III secretion system (T3SS) is upregulated by acidic pH. Both the urease and the T3SS were previously shown to be essential to intracellular replication. In this work, fluorescence microscopy with LysoTracker Red DND-99 (LTR) indicated that E. ictaluri-containing vacuoles (ECV) became acidified following ingestion by head kidney-derived macrophages (HKDM). In vivo ratiometric imaging demonstrated a lowered ECV pH, which fell to as low as pH 4 but subsequently increased to pH 6 or greater. Inhibition of vacuolar H(+)-ATPases by use of the specific inhibitor bafilomycin A1 abrogated both ECV acidification and intracellular replication in HKDM. Failure of an E. ictaluri urease knockout mutant to increase the ECV pH in the in vivo ratiometric assay suggests that ammonia produced by the urease reaction mediates the pH increase. Additionally, when the specific arginase inhibitor l-norvaline was used to treat E. ictaluri-infected HKDM, the ECV failed to neutralize and E. ictaluri was unable to replicate. This indicates that the HKDM-encoded arginase enzyme produces the urea used by the E. ictaluri urease enzyme. Failure of the ECV to acidify would prevent both upregulation of the T3SS and activation of the urease enzyme, either of which would prevent E. ictaluri from replicating in HKDM. Failure of the ECV to neutralize would result in a vacuolar pH too low to support E. ictaluri replication.


Assuntos
Edwardsiella ictaluri/patogenicidade , Infecções por Enterobacteriaceae/microbiologia , Doenças dos Peixes/microbiologia , Concentração de Íons de Hidrogênio , Macrófagos/microbiologia , Vacúolos/fisiologia , Análise de Variância , Animais , Arginase/metabolismo , Modelos Animais de Doenças , Edwardsiella ictaluri/efeitos dos fármacos , Edwardsiella ictaluri/crescimento & desenvolvimento , Inibidores Enzimáticos/farmacologia , Ictaluridae , Testes de Sensibilidade Microbiana , Microscopia de Fluorescência
4.
Ultrasonics ; 54(1): 385-94, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23769180

RESUMO

Three-dimensional (3D) elastic wave simulations can be used to investigate and optimize nondestructive evaluation (NDE) and structural health monitoring (SHM) ultrasonic damage detection techniques for aerospace materials. 3D anisotropic elastodynamic finite integration technique (EFIT) has been implemented for ultrasonic waves in carbon fiber reinforced polymer (CFRP) composite laminates. This paper describes 3D EFIT simulations of guided wave propagation in undamaged and damaged anisotropic and quasi-isotropic composite plates. Comparisons are made between simulations of guided waves in undamaged anisotropic composite plates and both experimental laser Doppler vibrometer (LDV) wavefield data and dispersion curves. Time domain and wavenumber domain comparisons are described. Wave interaction with complex geometry delamination damage is then simulated to investigate how simulation tools incorporating realistic damage geometries can aid in the understanding of wave interaction with CFRP damage. In order to move beyond simplistic assumptions of damage geometry, volumetric delamination data acquired via X-ray microfocus computed tomography is directly incorporated into the simulation. Simulated guided wave interaction with the complex geometry delamination is compared to experimental LDV time domain data and 3D wave interaction with the volumetric damage is discussed.


Assuntos
Aeronaves/instrumentação , Técnicas de Imagem por Elasticidade/métodos , Análise de Falha de Equipamento/instrumentação , Manufaturas/análise , Modelos Teóricos , Anisotropia , Simulação por Computador , Análise de Falha de Equipamento/métodos , Imageamento Tridimensional/métodos , Espalhamento de Radiação , Som
5.
Dis Aquat Organ ; 106(1): 17-29, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24062549

RESUMO

We compared Edwardsiella ictaluri from striped catfish in Vietnam with US channel catfish isolates. Biochemical analyses and sequencing of the 16S rRNA gene confirmed that the Vietnamese isolates were E. ictaluri. Comparison using rep-PCR fingerprinting demonstrated no significant differences between the isolates, but plasmid analysis indicated that the Vietnamese isolates grouped into 4 plasmid profiles, each different from the typical pEI1 and pEI2 plasmid profile found in the US isolates. Sequencing plasmids representative of the 4 profiles indicated that all contained derivatives of the E. ictaluri plasmid pEI1, whereas only 1 contained a plasmid derivative of the E. ictaluri plasmid pEI2. The pEI2 encoded type III secretion effector, EseI, and its chaperone, EscD, were found to be present on the chromosome in isolates lacking a pEI2 derivative. In addition, 1 isolate carried a 5023 bp plasmid that does not have homology to either pEI1 or pEI2. Furthermore, Vietnamese isolates were PCR positive for the type III and type VI secretion system genes esrC and evpC, respectively, and the urease enzyme, but were PCR-negative for the putative type IV secretion system gene virD4. A monoclonal antibody against the lipopolysaccharide of E. ictaluri ATCC 33202 did not react with the Asian isolates or with the more recent US isolates. Antibiotic resistance patterns were variable and did not correlate to the presence of any particular plasmid profile. Finally, the Vietnamese isolates were avirulent and had a significantly reduced capacity for intracellular replication within head-kidney-derived channel catfish macrophages.


Assuntos
Edwardsiella ictaluri/genética , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/microbiologia , Ictaluridae , Animais , Antibacterianos/farmacologia , Aquicultura , Impressões Digitais de DNA , Farmacorresistência Bacteriana , Edwardsiella ictaluri/efeitos dos fármacos , Edwardsiella ictaluri/patogenicidade , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/microbiologia , Doenças dos Peixes/epidemiologia , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Plasmídeos/genética , Organismos Livres de Patógenos Específicos , Estados Unidos , Vietnã/epidemiologia , Virulência
6.
Ultrasonics ; 53(7): 1217-26, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23602558

RESUMO

Delaminations in composite laminates resulting from impact events may be accompanied by minimal indication of damage at the surface. As such, inspections are required to ensure defects are within allowable limits. Conventional ultrasonic scanning techniques have been shown to effectively characterize the size and depth of delaminations but require physical contact with the structure and considerable setup time. Alternatively, a non-contact scanning laser vibrometer may be used to measure guided wave propagation in the laminate structure generated by permanently bonded transducers. A local Fourier domain analysis method is presented for processing guided wavefield data to estimate spatially dependent wavenumber values, which can be used to determine delamination depth. The technique is applied to simulated wavefields and results are analyzed to determine limitations of the technique with regards to determining defect size and depth. Based on simulation results, guidelines for application of the technique are developed. Finally, experimental wavefield data is obtained in quasi-isotropic carbon fiber reinforced polymer (CFRP) laminates with impact damage. The recorded wavefields are analyzed and wavenumber is measured to an accuracy of up to 8.5% in the region of shallow delaminations. These results show the promise of local wavenumber domain analysis to characterize the depth of delamination damage in composite laminates. The technique can find application in automated vehicle health assurance systems with potential for high detection rates and greatly reduced operator effort and setup time.

7.
Opt Express ; 20(3): 2967-73, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22330534

RESUMO

The shape of a multi-core optical fiber is calculated by numerically solving a set of Frenet-Serret equations describing the path of the fiber in three dimensions. Included in the Frenet-Serret equations are curvature and bending direction functions derived from distributed fiber Bragg grating strain measurements in each core. The method offers advantages over prior art in that it determines complex three-dimensional fiber shape as a continuous parametric solution rather than an integrated series of discrete planar bends. Results and error analysis of the method using a tri-core optical fiber is presented. Maximum error expressed as a percentage of fiber length was found to be 7.2%.


Assuntos
Algoritmos , Análise de Falha de Equipamento/instrumentação , Análise de Falha de Equipamento/métodos , Fibras Ópticas , Refratometria/instrumentação , Refratometria/métodos , Desenho de Equipamento
8.
Ultrasonics ; 52(2): 193-207, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21908011

RESUMO

We have implemented three-dimensional (3D) elastodynamic finite integration technique (EFIT) simulations to model Lamb wave scattering for two flaw-types in an aircraft-grade aluminum plate, a rounded rectangle flat-bottom hole and a disbond of the same shape. The plate thickness and flaws explored in this work include frequency-thickness regions where several Lamb wave modes exist and sometimes overlap in phase and/or group velocity. For the case of the flat-bottom hole the depth was incrementally increased to explore progressive changes in multiple-mode Lamb wave scattering due to the damage. The flat-bottom hole simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining unexpected results in experimental waveforms. For the rounded rectangle disbond flaw, which would be difficult to implement experimentally, we found that Lamb wave behavior differed significantly from the flat-bottom hole flaw. Most of the literature in this field is restricted to low frequency-thickness regions due to difficulties in interpreting data when multiple modes exist. We found that benchmarked 3D EFIT simulations can yield an understanding of scattering behavior for these higher frequency-thickness regions and in cases that would be difficult to set up experimentally. Additionally, our results show that 2D simulations would not have been sufficient for modeling the complicated scattering that occurred.


Assuntos
Ultrassom , Análise de Elementos Finitos , Ultrassom/métodos
9.
Appl Environ Microbiol ; 77(13): 4293-302, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21551284

RESUMO

A recently described Edwardsiella ictaluri type III secretion system (T3SS) with functional similarity to the Salmonella pathogenicity island 2 T3SS is required for replication in channel catfish head-kidney-derived macrophages (HKDM) and virulence in channel catfish. Quantitative PCR and Western blotting identified low pH and phosphate limitation as conducive to expression of the E. ictaluri T3SS, growth conditions that mimic the phagosomal environment. Mutagenesis studies demonstrated that expression is under the control of the EsrAB two-component regulatory system. EsrB also induces upregulation of the AraC-type regulatory protein EsrC, which enhances expression of the EscB/EseG chaperone/effector operon in concert with EsrB and induces expression of the pEI1-encoded effector, EseH. EsrC also induces expression of a putative type VI secretion system translocon protein, EvpC, which is secreted under the same low-pH conditions as the T3SS translocon proteins. The pEI2-encoded effector, EseI, was upregulated under low-pH and low-phosphate conditions but not in an EsrB- or EsrC-dependent manner. Mutations of EsrA and EsrB both resulted in loss of the ability to replicate in HKDM and full attenuation in the channel catfish host. Mutation of EsrC did not affect intracellular replication but did result in attenuation in catfish. Although EsrB is the primary transcriptional regulator for E. ictaluri genes within the T3SS pathogenicity island, EsrC regulates expression of the plasmid-carried effector eseH and appears to mediate coordinated expression of the T6SS with the T3SS.


Assuntos
Proteínas de Bactérias/metabolismo , Edwardsiella ictaluri/efeitos dos fármacos , Edwardsiella ictaluri/patogenicidade , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/metabolismo , Fosfatos/metabolismo , Animais , Western Blotting , Edwardsiella ictaluri/genética , Perfilação da Expressão Gênica , Concentração de Íons de Hidrogênio , Ictaluridae/microbiologia , Macrófagos/microbiologia , Reação em Cadeia da Polimerase
10.
Appl Environ Microbiol ; 73(24): 7934-46, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17965213

RESUMO

Edwardsiella ictaluri is the leading cause of mortality in channel catfish culture, but little is known about its pathogenesis. The use of signature-tagged mutagenesis in a waterborne infection model resulted in the identification of 50 mutants that were unable to infect/survive in catfish. Nineteen had minitransposon insertions in miscellaneous genes in the chromosome, 10 were in genes that matched to hypothetical proteins, and 13 were in genes that had no significant matches in the NCBI databases. Eight insertions were in genes encoding proteins associated with virulence in other pathogens, including three in genes involved in lipopolysaccharide biosynthesis, three in genes involved in type III secretion systems (TTSS), and two in genes involved in urease activity. With the use of a sequence from a lambda clone carrying several TTSS genes, Blastn analysis of the partially completed E. ictaluri genome identified a 26,135-bp pathogenicity island containing 33 genes of a TTSS with similarity to the Salmonella pathogenicity island 2 class of TTSS. The characterization of a TTSS apparatus mutant indicated that it retained its ability to invade catfish cell lines and macrophages but was defective in intracellular replication. The mutant also invaded catfish tissues in numbers equal to those of invading wild-type E. ictaluri bacteria but replicated poorly and was slowly cleared from the tissues, while the wild type increased in number.


Assuntos
Proteínas de Transporte/genética , Edwardsiella ictaluri/genética , Edwardsiella ictaluri/patogenicidade , Ilhas Genômicas , Mutagênese Insercional/métodos , Fatores de Virulência/genética , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Contagem de Colônia Microbiana , Elementos de DNA Transponíveis/genética , Infecções por Enterobacteriaceae/microbiologia , Ictaluridae/microbiologia , Rim/microbiologia , Macrófagos/microbiologia , Salmonella/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...