Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Catal ; 7(5): 585-592, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39006156

RESUMO

Intermolecular functionalization of tertiary C-H bonds to construct fully substituted stereogenic carbon centers represents a formidable challenge: without the assistance of directing groups, state-of-the-art catalysts struggle to introduce chirality to racemic tertiary sp 3 -carbon centers. Direct asymmetric functionalization of such centers is a worthy reactivity and selectivity goal for modern biocatalysis. Here we present an engineered nitrene transferase (P411-TEA-5274), derived from a bacterial cytochrome P450, that is capable of aminating tertiary C-H bonds to provide chiral α-tertiary primary amines with high efficiency (up to 2300 total turnovers) and selectivity (up to >99% enantiomeric excess (e.e.)). The construction of fully substituted stereocenters with methyl and ethyl groups underscores the enzyme's remarkable selectivity. A comprehensive substrate scope study demonstrates the biocatalyst's compatibility with diverse functional groups and tertiary C-H bonds. Mechanistic studies elucidate how active-site residues distinguish between the enantiomers and enable the enzyme to perform this transformation with excellent enantioselectivity.

2.
Angew Chem Int Ed Engl ; 63(16): e202319960, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38375976

RESUMO

Regiodivergent reactions are a fascinating tool to rapidly access molecular diversity while using identical coupling partners. We have developed a new approach for regiodivergent synthesis using the dual character of hypervalent bromines. In addition to the recently reported reactivity of hypervalent bromines as aryne precursors, the first transition metal-catalyzed reaction is reported. Accordingly, the development of these two complementary transformations allows for the alteration of regioselectivity to furnish both ortho- and meta-substituted alkynylation products. Mechanistic and computational studies show how these selectivities are controlled.

3.
J Am Chem Soc ; 146(5): 2959-2966, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38270588

RESUMO

The mechanism of cyclopropanations with diazirines as air-stable and user-friendly alternatives to commonly employed diazo compounds within iron heme enzyme-catalyzed carbene transfer reactions has been studied by means of density functional theory (DFT) calculations of model systems, quantum mechanics/molecular mechanics (QM/MM) calculations, and molecular dynamics (MD) simulations of the iron carbene and the cyclopropanation transition state in the enzyme active site. The reaction is initiated by a direct diazirine-diazo isomerization occurring in the active site of the enzyme. In contrast, an isomerization mechanism proceeding via the formation of a free carbene intermediate in lieu of a direct, one-step isomerization process was observed for model systems. Subsequent reaction with benzyl acrylate takes place through stepwise C-C bond formation via a diradical intermediate, delivering the cyclopropane product. The origin of the observed diastereo- and enantioselectivity in the enzyme was investigated through MD simulations, which indicate a preferred formation of the cis-cyclopropane by steric control.


Assuntos
Diazometano , Heme , Metano/análogos & derivados , Heme/química , Modelos Moleculares , Ferro , Ciclopropanos/química , Catálise
4.
Science ; 383(6683): 622-629, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38271490

RESUMO

Paclitaxel is a well known anticancer compound. Its biosynthesis involves the formation of a highly functionalized diterpenoid core skeleton (baccatin III) and the subsequent assembly of a phenylisoserinoyl side chain. Despite intensive investigation for half a century, the complete biosynthetic pathway of baccatin III remains unknown. In this work, we identified a bifunctional cytochrome P450 enzyme [taxane oxetanase 1 (TOT1)] in Taxus mairei that catalyzes an oxidative rearrangement in paclitaxel oxetane formation, which represents a previously unknown enzyme mechanism for oxetane ring formation. We created a screening strategy based on the taxusin biosynthesis pathway and uncovered the enzyme responsible for the taxane oxidation of the C9 position (T9αH1). Finally, we artificially reconstituted a biosynthetic pathway for the production of baccatin III in tobacco.


Assuntos
Alcaloides , Sistema Enzimático do Citocromo P-450 , Engenharia Metabólica , Paclitaxel , Proteínas de Plantas , Taxoides , Taxus , Alcaloides/biossíntese , Alcaloides/genética , Hidrocarbonetos Aromáticos com Pontes/química , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Éteres Cíclicos/química , Éteres Cíclicos/metabolismo , Paclitaxel/biossíntese , Taxoides/metabolismo , Taxus/enzimologia , Taxus/genética , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética
5.
J Am Chem Soc ; 145(29): 16176-16185, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37433085

RESUMO

In nature and synthetic chemistry, stereoselective [2 + 1] cyclopropanation is the most prevalent strategy for the synthesis of chiral cyclopropanes, a class of key pharmacophores in pharmaceuticals and bioactive natural products. One of the most extensively studied reactions in the organic chemist's arsenal, stereoselective [2 + 1] cyclopropanation, largely relies on the use of stereodefined olefins, which can require elaborate laboratory synthesis or tedious separation to ensure high stereoselectivity. Here, we report engineered hemoproteins derived from a bacterial cytochrome P450 that catalyze the synthesis of chiral 1,2,3-polysubstituted cyclopropanes, regardless of the stereopurity of the olefin substrates used. Cytochrome P450BM3 variant P411-INC-5185 exclusively converts (Z)-enol acetates to enantio- and diastereoenriched cyclopropanes and in the model reaction delivers a leftover (E)-enol acetate with 98% stereopurity, using whole Escherichia coli cells. P411-INC-5185 was further engineered with a single mutation to enable the biotransformation of (E)-enol acetates to α-branched ketones with high levels of enantioselectivity while simultaneously catalyzing the cyclopropanation of (Z)-enol acetates with excellent activities and selectivities. We conducted docking studies and molecular dynamics simulations to understand how active-site residues distinguish between the substrate isomers and enable the enzyme to perform these distinct transformations with such high selectivities. Computational studies suggest the observed enantio- and diastereoselectivities are achieved through a stepwise pathway. These biotransformations streamline the synthesis of chiral 1,2,3-polysubstituted cyclopropanes from readily available mixtures of (Z/E)-olefins, adding a new dimension to classical cyclopropanation methods.


Assuntos
Ciclopropanos , Sistema Enzimático do Citocromo P-450 , Ciclopropanos/química , Estereoisomerismo , Sistema Enzimático do Citocromo P-450/metabolismo , Álcoois , Acetatos , Alcenos/química
6.
Nat Commun ; 14(1): 3149, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258542

RESUMO

Challenging enantio- and diastereoselective cobalt-catalyzed C-H alkylation has been realized by an innovative data-driven knowledge transfer strategy. Harnessing the statistics of a related transformation as the knowledge source, the designed machine learning (ML) model took advantage of delta learning and enabled accurate and extrapolative enantioselectivity predictions. Powered by the knowledge transfer model, the virtual screening of a broad scope of 360 chiral carboxylic acids led to the discovery of a new catalyst featuring an intriguing furyl moiety. Further experiments verified that the predicted chiral carboxylic acid can achieve excellent stereochemical control for the target C-H alkylation, which supported the expedient synthesis for a large library of substituted indoles with C-central and C-N axial chirality. The reported machine learning approach provides a powerful data engine to accelerate the discovery of molecular catalysis by harnessing the hidden value of the available structure-performance statistics.

7.
Res Sq ; 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37090661

RESUMO

In nature and synthetic chemistry, stereoselective [2+1] cyclopropanation is the most prevalent strategy for the synthesis of chiral cyclopropanes, a class of key pharmacophores in pharmaceuticals and bioactive natural products. One of the most extensively studied reactions in the organic chemist's arsenal, stereoselective [2+1] cyclopropanation, largely relies on the use of stereodefined olefins, which require elaborate laboratory synthesis or tedious separation to ensure high stereoselectivity. Here we report engineered hemoproteins derived from a bacterial cytochrome P450 that catalyze the synthesis of chiral 1,2,3-polysubstituted cyclopropanes, regardless of the stereopurity of the olefin substrates used. Cytochrome P450 BM3 variant IC-G3 exclusively converts ( Z )-enol acetates to enantio- and diastereoenriched cyclopropanes and in our model reaction delivers a leftover ( E )-enol acetate with 98% stereopurity, using whole Escherichia coli cells. IC-G3 was further engineered with a single mutation to enable the biotransformation of ( E )-enol acetates to α -branched ketones with high levels of enantioselectivity while simultaneously catalyzing the cyclopropanation of ( Z )-enol acetates with excellent activities and selectivities. We conducted docking studies and molecular dynamics simulations to understand how active-site residues distinguish between the substrate isomers and enable the enzyme to perform these distinct transformations with such high selectivities. Computational studies suggest the observed enantio- and diastereoselectivities are achieved through a stepwise pathway. These biotransformations streamline the synthesis of chiral 1,2,3-polysubstituted cyclopropanes from readily available mixtures of ( Z/E )-olefins, adding a new dimension to classical cyclopropanation methods.

8.
J Am Chem Soc ; 145(1): 345-358, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36535642

RESUMO

Hypervalent chloranes are a class of rare and poorly explored reagents. Their unique electronic properties confer reactivity that is complementary to that of the common iodanes and emerging bromanes. Highly chemo- and regioselective, metal-free, and mild C-C and C-O couplings are reported here. Experimental and computational mechanistic studies elucidate the unprecedented reactivities and selectivities of these systems and the intermediacy of aryne intermediates. The synthetic potential of these transformations is further demonstrated via the post-functionalization of C-C and C-O coupling products obtained from reactions of chloranes with phenols under different conditions.


Assuntos
Fenóis , Indicadores e Reagentes
9.
J Am Chem Soc ; 144(34): 15662-15671, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35984989

RESUMO

Cycloaddition reactions─epitomized by the Diels-Alder reaction─offer an arguably unmatched springboard for achieving chemical complexity, often with excellent selectivity, in a modular single step. We report the synthesis of aza-acenaphthenes in a single step by an unprecedented formal peri-(3 + 2) cycloaddition of simple quinolines with alkynes. A commercially available iridium complex exerts a dual role of photosensitizer and photoredox catalyst, fostering a cyclization/rearomatization cascade. The initial energy-transfer phase leads to the acenaphthene skeleton, while the ensuing redox shuttling step leads to aromatization. We applied this technology to 8-substituted quinolines and phenanthrolines, which smoothly reacted with both terminal and internal alkynes with excellent levels of regio- and diastereoselectivity. Density functional theory calculations revealed the intertwined EnT/SET nature of the process and offered guiding design principles for the synthesis of new aza-acenaphthenes.


Assuntos
Acenaftenos , Quinolinas , Alcinos , Ciclização , Reação de Cicloadição
10.
Chem Soc Rev ; 50(16): 8903-8953, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34190223

RESUMO

The formation of C-aryl bonds has been the focus of intensive research over the last decades for the construction of complex molecules from simple, readily available feedstocks. Traditionally, these strategies involve the coupling of organohalides (I, Br, Cl) with organometallic reagents (Mg, Zn, B, Si, Sn,…) such as Kumada-Corriu, Negishi, Suzuki-Miyaura, Hiyama and Sonogashira cross-couplings. More recently, alternative methods have provided access to these products by reactions with less reactive C-Het (F, O, S, N) and C-C bonds. Compared to traditional methods, the direct cleavage and arylation of these chemical bonds, the essential link in accessible feedstocks, has become increasingly important from the viewpoint of step-economy and functional-group compatibility. This comprehensive review aims to outline the development and advances of this topic, which was organized into (1) C-F bond arylation, (2) C-O bond arylation, (3) C-S bond arylation, (4) C-N bond arylation, and (5) C-C bond arylation. Substantial attention has been paid to the strategies and mechanistic investigations. We hope that this review can trigger chemists to discover more efficient methodologies to access arylation products by cleavage of these C-Het and C-C bonds.

11.
Bioorg Med Chem ; 40: 116164, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34020276

RESUMO

A diversity-oriented synthesis of hydroxylated aryl-quinones via CH oxygenation reactions and their evaluation against Trypanosoma cruzi, the etiological agent of Chagas disease, was accomplished. With the use of ruthenium(II)- or palladium(II)-based catalysts, complementary regioselectivities were observed in the hydroxylation reactions and we have identified 9 compounds more potent than benznidazole (Bz) among these novel arylated and hydroxylated quinones. For instance, 5-hydroxy-2-[4-(trifluoromethyl)phenyl]-1,4-naphthoquinone (4h) with an IC50/24 h value of 22.8 µM is 4.5-fold more active than the state-of-the-art drug Bz. This article provides the first example of the application of CH activation for the position-selective hydroxylation of arylated quinones and the identification of these compounds as trypanocidal drug candidates.


Assuntos
Oxigênio/química , Paládio/química , Quinonas/farmacologia , Rutênio/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Catálise , Doença de Chagas/tratamento farmacológico , Relação Dose-Resposta a Droga , Camundongos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Quinonas/síntese química , Quinonas/química , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química
12.
Cancers (Basel) ; 13(5)2021 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-33671096

RESUMO

BACKGROUND: Despite substantial progress made in the last decades in colorectal cancer (CRC) research, new treatment approaches are still needed to improve patients' long-term survival. To date, the promising strategy to target tumor angiogenesis metabolically together with a sensitization of CRC to chemo- and/or radiotherapy by PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-3) inhibition has never been tested. Therefore, initial evaluation and validation of newly developed compounds such as KAN0438757 and their effects on CRC cells are crucial steps preceding to in vivo preclinical studies, which in turn may consolidate new therapeutic targets. MATERIALS AND METHODS: The efficiency of KAN0438757 to block PFKFB3 expression and translation in human CRC cells was evaluated by immunoblotting and real-time PCR. Functional in vitro assays assessed the effects of KAN0438757 on cell viability, proliferation, survival, adhesion, migration and invasion. Additionally, we evaluated the effects of KAN0438757 on matched patient-derived normal and tumor organoids and its systemic toxicity in vivo in C57BL6/N mice. RESULTS: High PFKFB3 expression is correlated with a worse survival in CRC patients. KAN0438757 reduces PFKFB3 protein expression without affecting its transcriptional regulation. Additionally, a concentration-dependent anti-proliferative effect was observed. The migration and invasion capacity of cancer cells were significantly reduced, independent of the anti-proliferative effect. When treating colonic patient-derived organoids with KAN0438757 an impressive effect on tumor organoids growth was apparent, surprisingly sparing normal colonic organoids. No high-grade toxicity was observed in vivo. CONCLUSION: The PFKFB3 inhibitor KAN0438757 significantly reduced CRC cell migration, invasion and survival. Moreover, on patient-derived cancer organoids KAN0438757 showed significant effects on growth, without being overly toxic in normal colon organoids and healthy mice. Our findings strongly encourage further translational studies to evaluate KAN0438757 in CRC therapy.

13.
Chem Commun (Camb) ; 57(30): 3668-3671, 2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33724282

RESUMO

Herein, we report on selectivity control in C-H activations with alkylidenecyclopropanes (ACPs) for the chemo-selective assembly of cyclopropanes or dienes. Thus, unprecedented rhodaelectro-catalyzed C-H activations were realized with diversely decorated ACPs with a wide substrate scope and electricity as the sole oxidant.

14.
Angew Chem Int Ed Engl ; 60(9): 4619-4624, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33270973

RESUMO

The electrochemical three-component assembly of isoquinolines has been accomplished by ruthenaelectro-catalyzed C-H/N-H functionalization. The robustness of the electrocatalysis was reflected by an ample substrate scope, an efficient electrooxidation, and an operationally friendly procedure. The isolation of key intermediates and detailed mechanistic studies, including unprecedented cyclovoltammetric analysis of a seven-membered ruthenacycle, provided support for an unusual ruthenium(II/III/I) regime.

15.
Angew Chem Int Ed Engl ; 59(42): 18795-18803, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-32700444

RESUMO

Ruthenium(II)biscarboxylate complexes enabled the selective alkylation of C-H and C-C bonds at the ortho- or meta-position. ortho-C-H Alkylations were achieved with 4-, 5- as well as 6-membered halocycloalkanes. Furthermore, the judicious choice of the directing group allowed for a full control of ortho-/meta-selectivities. Detailed mechanistic studies by experiment and computation were performed and provided strong support for an oxidative addition/reductive elimination process for ortho-alkylations, while a homolytic C-X cleavage was operative for the meta-selective transformations.

16.
Chemistry ; 26(48): 10981-10986, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32212283

RESUMO

Double ruthenium(II)-catalyzed alkyne annulations of quinones were accomplished. Thus, a strategy is reported that provides step-economical access to valuable quinones with a wide range of applications. C-H/N-H activations for alkyne annulations of naphthoquinones provided challenging polycyclic quinoidal compounds by forming four new bonds in one step. The singular power of the thus-obtained compounds was reflected by their antileukemic activity.


Assuntos
Quinonas/química , Rutênio/química , Alcinos/química , Catálise , Humanos , Leucemia/tratamento farmacológico
17.
Angew Chem Int Ed Engl ; 58(44): 15640-15645, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31476098

RESUMO

Experimental and computational studies provide detailed insight into the selectivity- and reactivity-controlling factors in bifurcated ruthenium-catalyzed direct C-H arylations and dehydrogenative C-H/C-H functionalizations. Thorough investigations revealed the importance of arene-ligand-free complexes for the formation of biscyclometalated intermediates within a ruthenium(II/IV/II) mechanistic manifold.

18.
Nat Commun ; 10(1): 3553, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391461

RESUMO

Methods for the late-stage diversification of structurally complex peptides hold enormous potential for advances in drug discovery, agrochemistry and pharmaceutical industries. While C-H arylations emerged for peptide modifications, they are largely limited to highly reactive, expensive and/or toxic reagents, such as silver(I) salts, in superstoichiometric quantities. In sharp contrast, we herein establish the ruthenium(II)-catalyzed C-H alkylation on structurally complex peptides. The additive-free ruthenium(II)carboxylate C-H activation manifold is characterized by ample substrate scope, racemization-free conditions and the chemo-selective tolerance of otherwise reactive functional groups, such as electrophilic ketone, bromo, ester, amide and nitro substituents. Mechanistic studies by experiment and computation feature an acid-enabled C-H ruthenation, along with a notable protodemetalation step. The transformative peptide C-H activation regime sets the stage for peptide ligation in solution and proves viable in a bioorthogonal fashion for C-H alkylations on user-friendly supports by means of solid phase peptide syntheses.


Assuntos
Peptídeos/síntese química , Técnicas de Síntese em Fase Sólida/métodos , Alquilação , Carbono/química , Catálise , Hidrogênio/química , Ligação de Hidrogênio , Rutênio/química
19.
Angew Chem Int Ed Engl ; 58(22): 7490-7494, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-30860636

RESUMO

Chemoselective C-H arylations were accomplished through micellar catalysis by a versatile single-component ruthenium catalyst. The strategy provided expedient access to C-H-arylated ferrocenes with wide functional-group tolerance and ample scope through weak chelation assistance. The sustainability of the C-H arylation was demonstrated by outstanding atom-economy and recycling studies. Detailed computational studies provided support for a facile C-H activation through thioketone assistance.

20.
Angew Chem Int Ed Engl ; 58(11): 3476-3480, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30565829

RESUMO

Bioorthogonal C-H allylation with ample scope was accomplished through a versatile manganese(I)-catalyzed C-H activation for the late-stage diversification of structurally complex peptides. The unique robustness of the manganese(I) catalysis manifold was reflected by full tolerance of sensitive functional groups, such as iodides, esters, amides, and OH-free hydroxy groups, thereby setting the stage for the racemization-free synthesis of C-H fused peptide hybrids featuring steroids, drug molecules, natural products, nucleobases, and saccharides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...