Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 9192, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513937

RESUMO

Nonhost resistance, a resistance of plant species against all nonadapted pathogens, is considered the most durable and efficient immune system in plants. To increase our understanding of the response of barley plants to infection by powdery mildew, Blumeria graminis f. sp. tritici, we used quantitative proteomic analysis (LC-MS/MS). We compared the response of two genotypes of barley cultivar Golden Promise, wild type (WT) and plants with overexpression of phytoglobin (previously hemoglobin) class 1 (HO), which has previously been shown to significantly weaken nonhost resistance. A total of 8804 proteins were identified and quantified, out of which the abundance of 1044 proteins changed significantly in at least one of the four comparisons ('i' stands for 'inoculated')- HO/WT and HOi/WTi (giving genotype differences), and WTi/WT and HOi/HO (giving treatment differences). Among these differentially abundant proteins (DAP) were proteins related to structural organization, disease/defense, metabolism, transporters, signal transduction and protein synthesis. We demonstrate that quantitative changes in the proteome can explain physiological changes observed during the infection process such as progression of the mildew infection in HO plants that was correlated with changes in proteins taking part in papillae formation and preinvasion resistance. Overexpression of phytoglobins led to modification in signal transduction prominently by dramatically reducing the number of kinases induced, but also in the turnover of other signaling molecules such as phytohormones, polyamines and Ca2+. Thus, quantitative proteomics broaden our understanding of the role NO and phytoglobins play in barley during nonhost resistance against powdery mildew.


Assuntos
Ascomicetos , Regulação da Expressão Gênica de Plantas/genética , Expressão Gênica/genética , Hemoglobinas/genética , Hemoglobinas/metabolismo , Hordeum/genética , Hordeum/metabolismo , Interações entre Hospedeiro e Microrganismos/genética , Proteoma/genética
2.
Free Radic Res ; 48(10): 1145-62, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25072785

RESUMO

Oxidation of proteins has received a lot of attention in the last decades due to the fact that they have been shown to accumulate and to be implicated in the progression and the pathophysiology of several diseases such as Alzheimer, coronary heart diseases, etc. This has also resulted in the fact that research scientists are becoming more eager to be able to measure accurately the level of oxidized protein in biological materials, and to determine the precise site of the oxidative attack on the protein, in order to get insights into the molecular mechanisms involved in the progression of diseases. Several methods for measuring protein carbonylation have been implemented in different laboratories around the world. However, to date no methods prevail as the most accurate, reliable, and robust. The present paper aims at giving an overview of the common methods used to determine protein carbonylation in biological material as well as to highlight the limitations and the potential. The ultimate goal is to give quick tips for a rapid decision making when a method has to be selected and taking into consideration the advantage and drawback of the methods.


Assuntos
Carbonilação Proteica , Proteômica/métodos , Proteômica/normas
3.
Comp Funct Genomics ; 2(4): 207-25, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-18628919

RESUMO

Yeast deletion strains created during gene function analysis projects very often show drastic phenotypic differences depending on the genetic background used. These results indicate the existence of important molecular differences between the CEN.PK2, FY1679 and W303 wild type strains. To characterise these differences we have compared the protein expression levels between CEN.PK2, FY1679 and W303 strains using twodimensional gel electrophoresis and identified selected proteins by mass spectrometric analysis. We have found that FY1679 and W303 strains are more similar to each other than to the CEN.PK2 strain. This study identifies 62 proteins that are differentially expressed between the strains and provides a valuable source of data for the interpretation of yeast mutant phenotypes observed in CEN.PK2, FY1679 and W303 strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...