Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 120(7): 745-755, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38507654

RESUMO

AIMS: In hypoxia, endothelial cells (ECs) proliferate, migrate, and form new vasculature in a process called angiogenesis. Recent studies have suggested that ECs rely on glycolysis to meet metabolic needs for angiogenesis in ischaemic tissues, and several studies have investigated the molecular mechanisms integrating angiogenesis and endothelial metabolism. Here, we investigated the role of stem cell factor (SCF) and its receptor, cKIT, in regulating endothelial glycolysis during hypoxia-driven angiogenesis. METHODS AND RESULTS: SCF and cKIT signalling increased the glucose uptake, lactate production, and glycolysis in human ECs under hypoxia. Mechanistically, SCF and cKIT signalling enhanced the expression of genes encoding glucose transporter 1 (GLUT1) and glycolytic enzymes via Akt- and ERK1/2-dependent increased translation of hypoxia inducible factor 1A (HIF1A). In hypoxic conditions, reduction of glycolysis and HIF-1α expression using chemical inhibitors significantly reduced the SCF-induced in vitro angiogenesis in human ECs. Compared with normal mice, mice with oxygen-induced retinopathy (OIR), characterized by ischaemia-driven pathological retinal neovascularization, displayed increased levels of SCF, cKIT, HIF-1α, GLUT1, and glycolytic enzymes in the retina. Moreover, cKIT-positive neovessels in the retina of mice with OIR showed elevated expression of GLUT1 and glycolytic enzymes. Further, blocking SCF and cKIT signalling using anti-SCF neutralizing IgG and cKIT mutant mice significantly reduced the expression of HIF-1α, GLUT1, and glycolytic enzymes and decreased the pathological neovascularization in the retina of mice with OIR. CONCLUSION: We demonstrated that SCF and cKIT signalling regulate angiogenesis by controlling endothelial glycolysis in hypoxia and elucidated the SCF/cKIT/HIF-1α axis as a novel metabolic regulation pathway during hypoxia-driven pathological angiogenesis.


Assuntos
Hipóxia Celular , Transportador de Glucose Tipo 1 , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia , Proteínas Proto-Oncogênicas c-kit , Transdução de Sinais , Fator de Células-Tronco , Animais , Humanos , Fator de Células-Tronco/metabolismo , Fator de Células-Tronco/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Camundongos Endogâmicos C57BL , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Neovascularização Retiniana/genética , Camundongos , Neovascularização Fisiológica , Células Cultivadas , Modelos Animais de Doenças , Glucose/metabolismo
2.
Bioresour Technol ; 341: 125751, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34416655

RESUMO

Due to industrialization and rapid increase in world population, the global energy consumption has increased dramatically. As a consequence, there is increased consumption of fossil fuels, leading to a rapid increase in CO2 concentration in the atmosphere. This accumulated CO2 can be efficiently used by autotrophs as a carbon source to produce chemicals and biopolymers. There has been increasing attention on the production of polyhydroxybutyrate (PHB), a biopolymer, with focus on reducing the production cost. For this, cheaper renewable feedstocks, molecular tools, including metabolic and genetic engineering have been explored to improve microbial strains along with process engineering aspects for scale-up of PHB production. This review discusses the recent advents on the utilization of CO2 as feedstock especially by engineered autotrophs, for sustainable production of PHB. The review also discusses the innovations in cultivation technology and process monitoring while understanding the underlying mechanisms for CO2 to biopolymer conversion.


Assuntos
Dióxido de Carbono , Carbono , Biopolímeros , Combustíveis Fósseis
3.
Bioresour Technol ; 327: 124789, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33556769

RESUMO

Industrial application of cyanobacterial poly-ß-hydroxybutyrate (PHB) production from CO2 is currently challenged by slow growth rate and low photoautotrophic PHB productivity of existing cyanobacteria species. Herein, a novel PHB-producing cyanobacterial strain was developed by harnessing fast-growing cyanobacteria Synechococcus elongatus UTEX 2973 with introduction of heterologous phaCAB genes. Under photoautotrophic condition, the engineered strain produced 420 mg L-1 (16.7% of dry cell weight) with the highest specific productivity of 75.2 mg L-1 d-1. When compared with a native PHB producer Synechocystis PCC 6803 under nitrogen deprivation, the engineered strain exhibited 2.4-fold higher PHB productivity. The performance of the engineered strain was further demonstrated in large scale cultivation using photobioreactor and outdoor cultivation employing industrial flue gas as the sole carbon source. This study can provide a promising solution to address petroleum-based plastic waste and contribute to CO2 mitigation.


Assuntos
Synechococcus , Synechocystis , Dióxido de Carbono , Nitrogênio , Synechococcus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...