Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38255555

RESUMO

In this study, carbon blocks were fabricated using isotropic coke and coal tar pitch as raw materials, with a variation in pressure during cold isostatic pressing (CIP). The CIP pressure was set to 50, 100, 150, and 200 MPa, and the effect of the CIP pressure on the mechanical and electrical properties of the resulting carbon blocks was analyzed. Microstructural observations confirmed that, after the kneading, the surface of isotropic coke was covered with the pitch components. Subsequently, after the CIP, granules, which were larger than isotropic coke and the kneaded particles, were observed. The formation of these granules was attributed to the coalescence of kneaded particles under the applied pressing pressure. This granule formation was accompanied by the development of pores, some remaining within the granules, while others were extruded, thereby existing externally. The increase in the applied pressing pressure facilitated the formation of granules, and this microstructural development contributed to enhanced mechanical and electrical properties. At a pressing pressure of 100 MPa, the maximum flexural strength was achieved at 33.3 MPa, and the minimum electrical resistivity was reached at 60.1 µΩm. The higher the pressing pressure, the larger the size of the granules. Pores around the granules tended to connect and grow larger, forming crack-like structures. This microstructural change led to degraded mechanical and electrical properties. The isotropic ratio of the carbon blocks obtained in this study was estimated based on the coefficient of thermal expansion (CTE). The results confirmed that all carbon blocks obtained proved to be isotropic. In this study, a specimen type named CIP-100 exhibited the best performance in every aspect as an isotropic carbon block.

2.
Materials (Basel) ; 16(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067998

RESUMO

The quantification of the phase fraction is critical in materials science, bridging the gap between material composition, processing techniques, microstructure, and resultant properties. Traditional methods involving manual annotation are precise but labor-intensive and prone to human inaccuracies. We propose an automated segmentation technique for high-tensile strength alloy steel, where the complexity of microstructures presents considerable challenges. Our method leverages the UNet architecture, originally developed for biomedical image segmentation, and optimizes its performance via careful hyper-parameter selection and data augmentation. We employ Electron Backscatter Diffraction (EBSD) imagery for complex-phase segmentation and utilize a combined loss function to capture both textural and structural characteristics of the microstructures. Additionally, this work is the first to examine the scalability of the model across varying magnifications and types of steel and achieves high accuracy in terms of dice scores demonstrating the adaptability and robustness of the model.

3.
Materials (Basel) ; 16(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176424

RESUMO

The purpose of this study is to improve the oxidation resistance of graphite blocks after graphitization at 2800 °C by introducing a curing process of phenolic resin, used as a binder to control the pore size. Using the methylene index obtained from FTIR, the curing temperature was set to 150 °C, the temperature at which cross-linking most highly occurs. Graphite blocks that had undergone curing, and were carbonized with a slow heating rate, showed increased mechanical and electrical properties. Microstructural observation confirmed that the curing process inhibited the formation of large pores in the graphite block. Therefore, the cured graphite block showed better oxidation resistance in air than a non-cured graphite block. Oxidation of the graphite block was caused by pores created by pyrolysis of the phenolic resin binder, which acted as active sites.

4.
Materials (Basel) ; 15(9)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35591594

RESUMO

In the present study, graphite blocks were fabricated using synthetic graphite scrap and phenolic resin, and the effect of the heating rate during carbonization on their mechanical and electrical characteristics was examined. While varying the heating rate from 1, 3, 5, and 7 to 9 °C/min, the microstructure, density, porosity, flexural strength, compressive strength, and electrical resistivity of the fabricated graphite blocks were measured. As the heating rate increased, the pores in the graphite blocks increased in size, and the shape of the gas release paths became more irregular. Overall, it was found that increases in the heating rate led to the degradation of the graphite blocks' mechanical and electrical properties.

5.
Nanomaterials (Basel) ; 12(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35214971

RESUMO

We fabricated and characterized AlGaN/GaN high-electron mobility transistors (HEMTs) with a nano-sized in situ cap layer (one is a silicon carbon nitride (SiCN) layer, and the other is a silicon nitride (SiN) layer) comparing to the conventional device without an in situ cap layer. The pulse characteristics and noise behaviors for two devices with in situ cap layers are much superior to those of the reference device without a cap layer, which means that the in situ cap layer effectively passivates the AlGaN surface. On the other hand, the device with an in situ SiCN cap layer showed the excellent device characteristics and noise performances compared to the other devices because of the reduced positive ionic charges and enhanced surface morphology caused by carbon (C) surfactant atoms during the growth of the SiCN cap layer. These results indicate that the AlGaN/GaN HEMT with the in situ SiCN cap layer is very promising for the next high-power device by replacing the conventional HEMT.

6.
Materials (Basel) ; 14(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34443233

RESUMO

Milled polyacrylonitrile (PAN)-based Carbon Fibers (mPCFs) were prepared from PAN-based carbon fibers by using a ball milling process. The resulting structural changes in the mPCFs were analyzed by correlating the analytical results obtained by X-ray diffraction (XRD) and Raman spectroscopy and verified by transmission electron microscopy (TEM) lattice images and diffraction patterns. The crystallite size La calculated from the XRD measurements decreased as the milling time was increased to 12 h and then decreased as the milling time was further increased to 18 h. The La of both partially-milled Carbon Fiber (pmCF) and milled Carbon Fiber (mCF) calculated from the Raman spectroscopy data continuously increased as the milling time increased. The difference may be because XRD measured the entire sample regardless of pmCF and mCF, while Raman spectroscopy was limited to measuring the surface and differentiated pmCF and mCF. As the ball milling time increased, the fiber surface was firstly broken by the impact energy of the balls, decreasing crystallinity, while the La inside the unbroken fibers increased.

7.
Environ Sci Pollut Res Int ; 26(21): 21750-21759, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31134538

RESUMO

Indoor air quality (IAQ) is one of important issues in indoor environment due to exposure to inhalable aerosol which is affected by indoor and outdoor factors. To demonstrate the effect of indoor and outdoor to the IAQ, this study presents three fractions of particulate matter (PM) (PM2.5, PM4, PM10), characterization of I/O ratios for PM under potential indoor (average occupancy) and outdoor factors (Asian dust, rain, wind, and snow days) and evaluation of chemical components in aerosols. In the chemical characteristics of PM, organic carbon (OC), elemental carbon (EC), and trace elements were analyzed in indoors and outdoors. There was no significant difference of respirable aerosol (PM2.5 and PM4) concentration in different indoor environments. The concentration of OC in PM10 was lower in indoor than outdoor in summer and winter seasons, while the concentration of OC in PM2.5 was higher in indoor than outdoor. Also, the OC/EC ratios in PM2.5 were higher than those in PM10. Further, the ratios of trace elements in PM2.5 and PM10 were different at various locations within the building. This study demonstrated that the exposure to PM2.5 is greatly affected by outdoor environment. Although there was no difference in inhalable and respirable aerosol concentration at different locations within the building, the impact of outdoor factors is strongly supported by OC/EC ratios and PM2.5/PM10 ratios of trace elements. This study shows that chemical components through the HVAC system affected the exposure to the indoor respirable aerosol, which could lead to adverse effect on the indoor air quality.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Monitoramento Ambiental , Exposição por Inalação/análise , Local de Trabalho/estatística & dados numéricos , Ar Condicionado , Poluição do Ar em Ambientes Fechados/análise , Automóveis , Carbono/análise , Poeira , Humanos , Tamanho da Partícula , Material Particulado/análise , Instituições Acadêmicas , Estações do Ano , Neve , Oligoelementos , Instalações de Transporte , Vento
8.
J Nanosci Nanotechnol ; 13(11): 7723-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24245322

RESUMO

We investigated the electrical conductivity (sigma) and mechanical property of polyvinylchloride/carbon nanotube composites as a function of the CNT content and processing time during a solid-state process of high speed vibration mixing (HSVM) and high energy ball milling (HEBM). Both processes were suggested to avoid high temperatures, solvents, chemical modification of carbon nanotubes. In this study, the percolation threshold (phi(c)) for electrical conduction is about 1 wt% CNT with a sigma value of 0.21 S/m, and the electrical conductivity is higher value than that reported by other researchers from melt mixing process or obtained from the other solid-state processes. We found that the dispersion of CNTs and morphology change from CNT breaking are closely related to sigma. Especially, a large morphology change in the CNTs was occurred at the specific processing time, and a significant decrease in the electrical conductivity of polyvinylchloride/carbon nanotube composite occurred in this condition. A meaningful increase of electrical properties and mechanical property is observed in the sample with about 1-2 wt% CNT contents sintered at 200 degrees C after the milling for 20 min by HEBM process. Our study indicates the proper process condition required to improve sigma of PVC/CNT composites.


Assuntos
Cristalização/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Cloreto de Polivinila/química , Condutividade Elétrica , Campos Eletromagnéticos , Dureza , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície , Resistência à Tração , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...