Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 18(11)2017 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-29156538

RESUMO

The loss of bone mass and alteration in bone physiology during space flight are one of the major health risks for astronauts. Although the lack of weight bearing in microgravity is considered a risk factor for bone loss and possible osteoporosis, organisms living in space are also exposed to cosmic radiation and other environmental stress factors. As such, it is still unclear as to whether and by how much radiation exposure contributes to bone loss during space travel, and whether the effects of microgravity and radiation exposure are additive or synergistic. Bone is continuously renewed through the resorption of old bone by osteoclast cells and the formation of new bone by osteoblast cells. In this study, we investigated the combined effects of microgravity and radiation by evaluating the maturation of a hematopoietic cell line to mature osteoclasts. RAW 264.7 monocyte/macrophage cells were cultured in rotating wall vessels that simulate microgravity on the ground. Cells under static 1g or simulated microgravity were exposed to γ rays of varying doses, and then cultured in receptor activator of nuclear factor-κB ligand (RANKL) for the formation of osteoclast giant multinucleated cells (GMCs) and for gene expression analysis. Results of the study showed that radiation alone at doses as low as 0.1 Gy may stimulate osteoclast cell fusion as assessed by GMCs and the expression of signature genes such as tartrate resistant acid phosphatase (Trap) and dendritic cell-specific transmembrane protein (Dcstamp). However, osteoclast cell fusion decreased for doses greater than 0.5 Gy. In comparison to radiation exposure, simulated microgravity induced higher levels of cell fusion, and the effects of these two environmental factors appeared additive. Interestingly, the microgravity effect on osteoclast stimulatory transmembrane protein (Ocstamp) and Dcstamp expressions was significantly higher than the radiation effect, suggesting that radiation may not increase the synthesis of adhesion molecules as much as microgravity.


Assuntos
Macrófagos/citologia , Proteínas de Membrana/metabolismo , Osteoclastos/citologia , Fosfatase Ácida Resistente a Tartarato/metabolismo , Ausência de Peso/efeitos adversos , Animais , Técnicas de Cultura de Células , Fusão Celular , Proliferação de Células/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Macrófagos/metabolismo , Macrófagos/efeitos da radiação , Camundongos , Osteoclastos/metabolismo , Osteoclastos/efeitos da radiação , Ligante RANK/farmacologia , Células RAW 264.7
2.
PLoS One ; 12(3): e0170358, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28248986

RESUMO

Living organisms in space are constantly exposed to radiation, toxic chemicals or reactive oxygen species generated due to increased levels of environmental and psychological stresses. Understanding the impact of spaceflight factors, microgravity in particular, on cellular responses to DNA damage is essential for assessing the radiation risk for astronauts and the mutation rate in microorganisms. In a study conducted on the International Space Station, confluent human fibroblasts in culture were treated with bleomycin for three hours in the true microgravity environment. The degree of DNA damage was quantified by immunofluorescence staining for γ-H2AX, which is manifested in three types of staining patterns. Although similar percentages of these types of patterns were found between flight and ground cells, there was a slight shift in the distribution of foci counts in the flown cells with countable numbers of γ-H2AX foci. Comparison of the cells in confluent and in exponential growth conditions indicated that the proliferation rate between flight and the ground may be responsible for such a shift. We also performed a microarray analysis of gene expressions in response to bleomycin treatment. A qualitative comparison of the responsive pathways between the flown and ground cells showed similar responses with the p53 network being the top upstream regulator. The microarray data was confirmed with a PCR array analysis containing a set of genes involved in DNA damage signaling; with BBC3, CDKN1A, PCNA and PPM1D being significantly upregulated in both flight and ground cells after bleomycin treatment. Our results suggest that whether microgravity affects DNA damage response in space can be dependent on the cell type and cell growth condition.


Assuntos
Bleomicina/efeitos adversos , Dano ao DNA , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Ausência de Peso , Bleomicina/farmacologia , Linhagem Celular , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Voo Espacial
3.
Life Sci Space Res (Amst) ; 12: 24-31, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28212705

RESUMO

Although charged particles in space have been detected with radiation detectors on board spacecraft since the discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation is challenging due to the low dose and low dose rate nature of the radiation environment, and due to the difficulty in distinguishing the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in their lymphocytes and early onset of cataracts, are attributed primarily to their exposure to space radiation. In this study, cultured human fibroblasts were flown on the International Space Station (ISS). Cells were kept at 37°C in space for 14 days before being fixed for analysis of DNA damage with the γ-H2AX assay. The 3-dimensional γ-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed several foci that were larger and displayed a track pattern only in the Day 14 flight samples. To confirm that the foci data from the flight study was actually induced from space radiation exposure, cultured human fibroblasts were exposed to low dose rate γ rays at 37°C. Cells exposed to chronic γ rays showed similar foci size distribution in comparison to the non-exposed controls. The cells were also exposed to low- and high-LET protons, and high-LET Fe ions on the ground. Our results suggest that in G1 human fibroblasts under the normal culture condition, only a small fraction of large size foci can be attributed to high-LET radiation in space.


Assuntos
Astronautas , Dano ao DNA/genética , Fibroblastos/patologia , Raios gama/efeitos adversos , Células Cultivadas , Dano ao DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Histonas/metabolismo , Humanos , Transferência Linear de Energia , Astronave
4.
J Radiat Res ; 53(2): 225-33, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22510595

RESUMO

Recent studies have indicated that autophagy may be one of the important pathways induced by ionizing radiation. Atorvastatin (statin), an inhibitor of 3-hydroxyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase, may exhibit anticancer effects as an autophagy inducer. In our study, the cell killing and radiosensitizing effects of statin were analyzed in PC3 cell line. Activation of the autophagy pathway was analyzed using the GFP-LC3 assay and western blot to determine LC3-II expression. The radiosensitivity of PC3 cells was determined using the clonal survival assay, TUNEL assay, and the Annexin V apoptosis assay. The expression profiles of autophagy related genes were analyzed using a pathway specific real-time polymerase chain reaction (PCR) array. Autophagic response was induced in PC3 cells after exposure to statin and/or gamma rays. Inhibition of the autophagic process using small interfering RNAs (siRNA) targeting Atg7 and/or Atg12 significantly reduced radiosensitivity of PC3 cells. Statin also exhibited a significant apoptosis-inducing effect in PC3 cells, which can be partially suppressed by Atg7 siRNA. Cells treated with statin and gamma irradiation showed significantly reduced colony forming efficiency and increased number of Annexin V positive early apoptotic cells. Analysis of autophagy and its regulatory gene profile showed that the expressions of 22 genes out of 86 genes assessed were significantly altered in the cells exposed to combined treatment or statin alone. The data indicate that activation of the autophagy pathway may be responsible for apoptosis inducing effect of statin. Furthermore, combined treatment with radiation and autophagic inducer, such as statin, may be synergistic in inducing cell death of PC3 cells.


Assuntos
Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Ácidos Heptanoicos/administração & dosagem , Neoplasias da Próstata/patologia , Neoplasias da Próstata/fisiopatologia , Pirróis/administração & dosagem , Tolerância a Radiação/efeitos dos fármacos , Atorvastatina , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Humanos , Masculino , Radiossensibilizantes/administração & dosagem
5.
J Radiat Res ; 52(6): 743-51, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22020081

RESUMO

Radio-resistant or recurrent prostate cancer represents a serious health risk for approximately 20%-30% of patients treated with primary radiation therapy for clinically localized prostate cancer. In the present study, we investigated the expression profiles of 84 genes involved in various apoptosis pathways in two prostate cancer cell lines LNCaP (P53+ and AR+) and PC3 (P53- and AR-). We also studied the effect of monensin, an apoptosis inducing reagent, in X-ray-induced cell killing. Comparison of gene expressions between unirradiated LNCaP and PC3 cells revealed distinguished gene expression patterns. The data showed a significantly higher expression level of genes involved in the caspase/card family and the TNF ligand/receptor family in PC3 cells, whereas, LNCaP cells exhibited higher expressions in the p53 related genes. At 2 and 4 hrs post a 10 Gy X-ray exposure, changes of gene expressions were detected in a significant fraction of the genes in LNCaP cells, but no significant changes were found in PC3 cells. There was no significant apoptosis-inducing effect of X-rays (up to 10 Gy) in both cell lines; however, monensin was shown to be effective in inducing apoptosis in LNCaP, but not in PC3 cells. In addition, the effect of combined treatment of monensin and X-rays in LNCaP cells appeared to be synergistic. Our results suggest that monensin may be effective for both cancer cell killing and radiosensitizing, and the different expression profiles in apoptosis related genes in cancer cells may be correlated with their sensitivity to apoptosis inducing reagents.


Assuntos
Apoptose/genética , Apoptose/efeitos da radiação , Neoplasias da Próstata/genética , Neoplasias da Próstata/radioterapia , Tolerância a Radiação/genética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/efeitos da radiação , Perfilação da Expressão Gênica , Humanos , Masculino , Monensin/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Tolerância a Radiação/efeitos dos fármacos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
J Biol Chem ; 286(37): 32483-90, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21775437

RESUMO

This study explores the changes in expression of microRNA (miRNA) and related genes under simulated microgravity conditions. In comparison with static 1 × g, microgravity has been shown to alter global gene expression patterns and protein levels in cultured cells or animals. miRNA has recently emerged as an important regulator of gene expression, possibly regulating as many as one-third of all human genes. However, very little is known about the effect of altered gravity on miRNA expression. To test the hypothesis that the miRNA expression profile would be altered in zero gravity resulting in altered regulation of gene expression leading to metabolic or functional changes in cells, we cultured TK6 human lymphoblastoid cells in a high aspect ratio vessel (bioreactor) for 72 h either in the rotating condition to model microgravity in space or in the static condition as a control. Expression of several miRNAs was changed significantly in the simulated microgravity condition including miR-150, miR-34a, miR-423-5p, miR-22, miR-141, miR-618, and miR-222. To confirm whether this altered miRNA expression correlates with gene expression and functional changes of the cells, we performed DNA microarray and validated the related genes using quantitative RT-PCR. Expression of several transcription factors including EGR2, ETS1, and c-REL was altered in simulated microgravity conditions. Taken together, the results reported here indicate that simulated microgravity alters the expression of miRNAs and genes in TK6 cells. To our knowledge, this study is the first to report the effects of simulated microgravity on the expression of miRNA and related genes.


Assuntos
Regulação da Expressão Gênica , Linfócitos/metabolismo , MicroRNAs/biossíntese , Ausência de Peso , Linhagem Celular , Perfilação da Expressão Gênica , Linfócitos/citologia , Análise de Sequência com Séries de Oligonucleotídeos
7.
Curr Genomics ; 10(4): 250-8, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19949546

RESUMO

Living organisms are constantly threatened by environmental DNA-damaging agents, including UV and ionizing radiation (IR). Repair of various forms of DNA damage caused by IR is normally thought to follow lesion-specific repair pathways with distinct enzymatic machinery. DNA double strand break is one of the most serious kinds of damage induced by IR, which is repaired through double strand break (DSB) repair mechanisms, including homologous recombination (HR) and non-homologous end joining (NHEJ). However, recent studies have presented increasing evidence that various DNA repair pathways are not separated, but well interlinked. It has been suggested that non-DSB repair mechanisms, such as Nucleotide Excision Repair (NER), Mismatch Repair (MMR) and cell cycle regulation, are highly involved in DSB repairs. These findings revealed previously unrecognized roles of various non-DSB repair genes and indicated that a successful DSB repair requires both DSB repair mechanisms and non-DSB repair systems. One of our recent studies found that suppressed expression of non-DSB repair genes, such as XPA, RPA and MLH1, influenced the yield of IR induced micronuclei formation and/or chromosome aberrations, suggesting that these genes are highly involved in DSB repair and DSB-related cell cycle arrest, which reveals new roles for these gene products in the DNA repair network. In this review, we summarize current progress on the function of non-DSB repair-related proteins, especially those that participate in NER and MMR pathways, and their influence on DSB repair. In addition, we present our developing view that the DSB repair mechanisms are more complex and are regulated by not only the well known HR/NHEJ pathways, but also a systematically coordinated cellular network.

8.
DNA Repair (Amst) ; 7(11): 1835-45, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18703169

RESUMO

Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in double-strand break (DSB) repair, and its impact on cytogenetic responses has not been well studied. The purpose of this study is to identify new roles of IR inducible genes in regulating DSB repair and cell cycle progression. In this study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by small interfering RNA in human fibroblast cells. Frequency of micronuclei (MN) formation and chromosome aberrations were measured to determine efficiency of cytogenetic repair, especially DSB repair. In response to IR, the formation of MN was significantly increased by suppressed expression of five genes: Ku70 (DSB repair pathway), XPA (nucleotide excision repair pathway), RPA1 (mismatch repair pathway), RAD17 and RBBP8 (cell cycle control). Knocked-down expression of four genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Moreover, decreased XPA, p21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Nine of these eleven genes, whose knock-down expression affected cytogenetic repair, were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate IR-induced biological consequences. Furthermore, eight non-DBS repair genes showed involvement in regulating DSB repair, indicating that successful DSB repair requires both DSB repair mechanisms and non-DSB repair systems. These results reveal that many genes play previously unrecognized roles in multiple DNA repair responses, all of which are required for successful repair of IR-induced damage.


Assuntos
Dano ao DNA , Reparo do DNA , Ciclo Celular , Linhagem Celular , Aberrações Cromossômicas , Cromossomos/ultraestrutura , Citogenética , Raios gama , Perfilação da Expressão Gênica , Humanos , Cinética , RNA Interferente Pequeno/metabolismo , Radiação Ionizante , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...