Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 147: 105163, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166698

RESUMO

Deep brain stimulation (DBS) of the globus pallidus internus (GPi, entopeduncular nucleus, EPN, in rodents) has become important for the treatment of generalized dystonia, a severe and often intractable movement disorder. It is unclear if lower frequencies of GPi-DBS or stimulations of the subthalamic nucleus (STN) are of advantage. In the present study, the main objective was to examined the effects of bilateral EPN-DBS at different frequencies (130 Hz, 40 Hz, 15 Hz) on the severity of dystonia in the dtsz mutant hamster. In addition, STN stimulations were done at a frequency, proven to be effective by the present EPN-DBS in dystonic hamsters. In order to obtain precise bilateral electrical stimuli with magnitude of 50 µA, a pulse width of 60 µs and defined frequencies, it was necessary to develop a new optimized stimulator prior to the experiments. Since the individual highest severity of dystonic episodes is known to be reached within three hours after induction in dtsz hamsters, the duration of DBS was 180 min. During DBS with 130 Hz the severity of dystonia was significantly lower within the third hour than without DBS in the same animals (p < 0.05). DBS with 40 Hz tended to exert antidystonic effects after three hours, while 15 Hz stimulations of the EPN and 130 Hz stimulations of the STN failed to show any effects on the severity. DBS of the EPN at 130 Hz was most effective against generalized dystonia in the dtsz mutant. The response to EPN-DBS confirms that the dtsz mutant is suitable to further investigate the effects of long-term DBS on severity of dystonia and neuronal network activities, important to give insights into the mechanisms of DBS.


Assuntos
Estimulação Encefálica Profunda/instrumentação , Estimulação Encefálica Profunda/métodos , Distonia , Animais , Cricetinae , Modelos Animais de Doenças , Núcleo Entopeduncular/fisiologia , Feminino , Masculino , Fenótipo , Núcleo Subtalâmico/fisiologia
2.
Neurobiol Dis ; 143: 105018, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32682952

RESUMO

In addition to tissues such as liver, the plasma membrane sodium-dependent citrate transporter, NaCT (SLC13A5), is highly expressed in brain neurons, but its function is not understood. Loss-of-function mutations in the human SLC13A5 gene have been associated with severe neonatal encephalopathy and pharmacoresistant seizures. The molecular mechanisms of these neurological alterations are not clear. We performed a detailed examination of a Slc13a5 deletion mouse model including video-EEG monitoring, behavioral tests, and electrophysiologic, proteomic, and metabolomic analyses of brain and cerebrospinal fluid. The experiments revealed an increased propensity for epileptic seizures, proepileptogenic neuronal excitability changes in the hippocampus, and significant citrate alterations in the CSF and brain tissue of Slc13a5 deficient mice, which may underlie the neurological abnormalities. These data demonstrate that SLC13A5 is involved in brain citrate regulation and suggest that abnormalities in this regulation can induce seizures. The present study is the first to (i) establish the Slc13a5-knockout mouse model as a helpful tool to study the neuronal functions of NaCT and characterize the molecular mechanisms by which functional deficiency of this citrate transporter causes epilepsy and impairs neuronal function; (ii) evaluate all hypotheses that have previously been suggested on theoretical grounds to explain the neurological phenotype of SLC13A5 mutations; and (iii) indicate that alterations in brain citrate levels result in neuronal network excitability and increased seizure propensity.


Assuntos
Encéfalo/metabolismo , Ácido Cítrico/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Hipocampo/fisiopatologia , Convulsões/metabolismo , Simportadores/genética , Simportadores/metabolismo , Animais , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/metabolismo , Feminino , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Rede Nervosa/metabolismo , Rede Nervosa/fisiopatologia , Neurônios/metabolismo , Convulsões/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-32269520

RESUMO

PURPOSE: We present a case of voltage-gated potassium channel (VGKC) complex antibody-positive limbic encephalitis (LE) harboring autoantibodies against Kv1.2. Since the patient responded well to immunotherapy, the autoantibodies were regarded as pathogenic. We aimed to characterize the pathophysiological role of this antibody in comparison to an antibody against the VGKC-associated protein contactin-associated protein-2 (CASPR2). METHODS: Stereotactic injection of patient sera (anti-Kv1.2-associated LE or anti-CASPR2 encephalopathy) and a control subject was performed into the hippocampus of the anesthetized rat in vivo, and hippocampal slices were prepared for electrophysiological purposes. Using extra- and intracellular techniques, synaptic transmission, long-term potentiation (LTP) and vulnerability to pro-epileptic conditions were analyzed. RESULTS: We observed that the slope of the field excitatory postsynaptic potential (fEPSP) was significantly increased at Schaffer collateral-CA1 synapses in anti-Kv1.2-treated and anti-CASPR2-treated rats, but not at medial perforant path-dentate gyrus synapses. The increase of the fEPSP slope in CA1 was accompanied by a decrease of the paired-pulse ratio in anti-Kv1.2, but not in anti-CASPR2 tissue, indicating presynaptic site of anti-Kv1.2. In addition, anti-Kv1.2 tissue showed enhanced LTP in CA1, but dentate gyrus LTP remained unaltered. Importantly, LTP in slices from anti-CASPR2-treated animals did not differ from control values. Intracellular recordings from CA1 neurons revealed that the resting membrane potential and a single action potential were not different between anti-Kv1.2 and control tissue. However, when the depolarization was prolonged, the number of action potentials elicited was reduced in anti-Kv1.2-treated tissue compared to both control and anti-CASPR2 tissue. In contrast, polyspike discharges induced by removal of Mg2+ occurred earlier and more frequently in both patient sera compared to control. CONCLUSION: Patient serum containing anti-Kv1.2 facilitates presynaptic transmitter release as well as postsynaptic depolarization at the Schaffer-collateral-CA1 synapse, but not in the dentate gyrus. As a consequence, both synaptic transmission and LTP in CA1 are facilitated and action potential firing is altered. In contrast, anti-CASPR2 leads to increased postsynaptic potentials, but without changing LTP or firing properties suggesting that anti-Kv1.2 and anti-CASPR2 differ in their cellular effects. Both patient sera alter susceptibility to epileptic conditions, but presumably by different mechanisms.

4.
Front Cell Neurosci ; 14: 33, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174814

RESUMO

PURPOSE: Epilepsy therapy is currently based on anti-seizure drugs that do not modify the course of the disease, i.e., they are not anti-epileptogenic in nature. Previously, we observed that in vivo casein kinase 2 (CK2) inhibition with 4,5,6,7-tetrabromotriazole (TBB) had anti-epileptogenic effects in the acute epilepsy slice model. METHODS: Here, we pretreated rats with TBB in vivo prior to the establishment of a pilocarpine-induced status epilepticus (SE) in order to analyze the long-term sequelae of such a preventive TBB administration. RESULTS: We found that TBB pretreatment delayed onset of seizures after pilocarpine and slowed down disease progression during epileptogenesis. This was accompanied with a reduced proportion of burst firing neurons in the CA1 area. Western blot analyses demonstrated that CA1 tissue from TBB-pretreated epileptic animals contained significantly less CK2 than TBB-pretreated controls. On the transcriptional level, TBB pretreatment led to differential gene expression changes of KCa2.2, but also of HCN1 and HCN3 channels. Thus, in the presence of the HCN channel blocker ZD7288, pretreatment with TBB rescued the afterhyperpolarizing potential (AHP) as well as spike frequency adaptation in epileptic animals, both of which are prominent functions of KCa2 channels. CONCLUSION: These data indicate that TBB pretreatment prior to SE slows down disease progression during epileptogenesis involving increased KCa2 function, probably due to a persistently decreased CK2 protein expression.

5.
Brain Sci ; 10(2)2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098388

RESUMO

Background: The conversion of glutamic acid into γ-aminobutyric acid (GABA) is catalyzed by the glutamic acid decarboxylase (GAD). Antibodies against this enzyme have been described in neurological disorders, but the pathophysiological role of these antibodies is still poorly understood. We hypothesized that anti-GAD autoantibodies could diminish the GABA content in the slice and facilitate epileptic activity. Methods: Cerebrospinal fluids (CSF) from two patients containing anti-GAD (A and B) were injected into the rat hippocampus in vivo. Hippocampal slices were prepared for electrophysiological field potential recordings in order to record recurrent epileptic discharges (REDs) in the CA1 region induced by the removal of Mg2+ and/or by adding gabazine. As control groups, we injected an anti-GAD-negative human CSF or saline solution, and we used non-operated naive animals. Results: RED frequencies were significantly higher in the Mg2+-free solution than in the gabazine-containing solution. The average frequency of REDs in the last 10 min and the average duration of REDs in the last 5 min did not show significant differences between the anti-GAD-B-treated and the control slices, but in the Mg2+-free solution, anti-GAD-A had significantly higher epileptic activity than anti-GAD-B. Conclusions: These results indicate that anti-GAD has distinct effects on the development of spontaneous epileptic activity.

6.
Artigo em Inglês | MEDLINE | ID: mdl-31921825

RESUMO

Fracture healing and bone regeneration, particularly in the elderly, remains a challenge. There is an ongoing search for methods to activate osteoblasts, and the application of electrical fields is an attractive approach in this context. Although it is known that such electromagnetic fields lead to osteoblast migration and foster mesenchymal osteogenic differentiation, so far the mechanisms of osteoblast activation remain unclear. Possible mechanisms could rely on changes in Ca2+-influx via ion channels, as these are known to modulate osteoblast activity, e.g., via voltage-sensitive, stretch-sensitive, transient-receptor-potential (TRP) channels, or store-operated release. In the present in vitro study, we explored whether electrical fields are able to modulate the expression of voltage-sensitive calcium channels as well as TRP channels in primary human osteoblast cell lines. We show migration speed is significantly increased in stimulated osteoblasts (6.4 ± 2.1 µm/h stimulated, 3.6 ± 1.1 µm/h control), and directed toward the anode. However, within a range of 154-445 V/m, field strength did not correlate with migration velocity. Neither was there a correlation between electric field and voltage-gated calcium channel (Cav3.2 and Cav1.4) expression. However, the expression of TRPM7 significantly correlated positively to electric field strength. TRPM7 channel blockade using NS8593, in turn, did not significantly alter migration speed, nor did blockade of Cav3.2 and Cav1.4 channels using Ni+ or verapamil, respectively, while a general Ca2+-influx block using Mg2+ accelerated migration. Stimulating store-operated Ca2+-release significantly reduced migration speed, while blocking IP3 had only a minor effect (at low and high concentrations of 2-APB, respectively). We conclude that (i) store operated channels negatively modulate migration speed and that (ii) the upregulation of TRPM7 might constitute a compensatory mechanism-which might explain how increasing expression levels at increasing field strengths result in constant migration speeds.

7.
Epilepsy Res ; 139: 157-163, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29224956

RESUMO

A common function of group III metabotropic glutamate receptors (mGluRs) located at the presynaptic site of a glutamatergic synapse is synaptic depression. Here, we studied synaptic depression mediated by group III mGluR activation at Schaffer collateral-CA1 (SC-CA1) synapses and associational-commissural-CA3 (AC-CA3) synapses by recording field excitatory postsynaptic potentials in the in vitro brain slice preparation. In order to gauge the impact of synaptic depression in chronically epileptic tissue, we compared rats after pilocarpine-induced status epilepticus (post-SE) with control animals. We observed that synaptic transmission at control AC-CA3 synapses was sensitive to the group III mGluR agonist L-AP4 (10µM), while there was no effect of this compound at SC-CA1 synapses in the same tissue. In contrast, synaptic depression at AC-CA3 synapses by L-AP4 was lost in chronically epileptic tissue, and we found a significant synaptic depression at SC-CA1 synapses in post-SE tissue by L-AP4 and by the mGluR8-selective agonist DCPG. The depression by L-AP4 and DCPG in CA1 was also demonstrated in immature control tissue suggesting developmental down-regulation of mGluR8 at this synapse as well as re-appearance of this isoform under pathological conditions. Quantitative real-time RT-PCR was used to identify mGluR isoforms and to assess their transcriptional changes in post-SE tissue. These analyses revealed down-regulation of mGluR4 and mGluR6 at AC-CA3 and up-regulation of mGluR8 at SC-CA1 synapses. We conclude that group III mGluR-mediated synaptic depression is differentially altered in chronically epileptic tissue by a bidirectional shift of the transcriptional level.


Assuntos
Epilepsia/metabolismo , Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/metabolismo , Animais , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Neurotransmissores/farmacologia , Ratos Wistar , Sinapses/efeitos dos fármacos , Técnicas de Cultura de Tecidos
8.
Neural Plast ; 2017: 8087401, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29098091

RESUMO

Spatial learning and associating spatial information with individual experience are crucial for rodents and higher mammals. Hence, studying the cellular and molecular cascades involved in the key mechanism of information storage in the brain, synaptic plasticity, has led to enormous knowledge in this field. A major open question applies to the interdependence between synaptic plasticity and its behavioral correlates. In this context, it has become clear that behavioral aspects may impact subsequent synaptic plasticity, a phenomenon termed behavioral metaplasticity. Here, we trained control and pilocarpine-treated chronically epileptic rats of two different age groups (adolescent and adult) in a spatial memory task and subsequently tested long-term potentiation (LTP) in vitro at Schaffer collateral-CA1 synapses. As expected, memory acquisition in the behavioral task was significantly impaired both in pilocarpine-treated animals and in adult controls. Accordingly, these groups, without being tested in the behavioral training task, showed reduced CA1-LTP levels compared to untrained young controls. Spatial memory training significantly reduced subsequent CA1-LTP in vitro in the adolescent control group yet enhanced CA1-LTP in the adult pilocarpine-treated group. Such training in the adolescent pilocarpine-treated and adult control groups resulted in intermediate changes. Our study demonstrates age-dependent functional metaplasticity following a spatial memory training task and its reversal under pathological conditions.


Assuntos
Região CA1 Hipocampal/fisiopatologia , Epilepsia/fisiopatologia , Hipocampo/fisiopatologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Comportamento Animal/fisiologia , Epilepsia/induzido quimicamente , Potenciação de Longa Duração/fisiologia , Pilocarpina , Ratos , Ratos Wistar , Memória Espacial/fisiologia
9.
Front Cell Neurosci ; 10: 130, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242441

RESUMO

Glutamic acid decarboxylase of 65 kDa (GAD65) antibodies have been reported in a variety of neurological disorders such as stiff-person syndrome (SPS), sporadic ataxia and some cases of epilepsy. Since the target is believed to be the cytoplasmic enzyme GAD65, the key enzyme of γ-aminobutyric acid (GABA) synthesis, the pathophysiological role of these antibodies is poorly understood. Here, we stereotactically injected human cerebrospinal fluid (CSF) containing GAD65-antibodies into the hippocampus of rats in vivo and then prepared hippocampal slices 1-2 days after post-operative recovery. We characterized both evoked and spontaneous GABAergic transmission in vitro using sharp microelectrode and patch-clamp recordings in CA1 neurons. Intracellular recordings with sharp microelectrodes from CA1 neurons showed that evoked GABAAR- or GABABR-mediated inhibitory postsynaptic potentials (IPSP) remained unaltered in anti-GAD65 tissue. These results were confirmed with patch-clamp recordings showing no difference in evoked gabazine-sensitive inhibitory postsynaptic currents (IPSCs). In addition, spontaneous IPSCs also showed no difference between anti-GAD65 tissue and controls with respect to the mean frequency, the mean amplitude and the sIPSC distribution. In conclusion, stereotactic injection of GAD65-antibodies into the hippocampus leaves evoked and spontaneous GABAergic synaptic transmission intact. Hence, dysfunction of the inhibitory GABAergic system does not appear to be the major mechanism of epileptogenicity in this disease.

10.
Brain Res ; 1633: 10-18, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26721688

RESUMO

Autoimmune encephalitis is increasingly recognized in patients with otherwise unexplained encephalopathy with epilepsy. Among these, patients with anti-N-methyl D-aspartate receptor (NMDAR) encephalitis present epileptic seizures, memory deficits, and psychiatric symptoms. However, the functional consequences of such autoantibodies are poorly understood. In order to investigate the pathophysiology of this disease, we stereotactically injected either cerebrospinal fluid (CSF) from three anti-NMDAR encephalitis patients or commercially available anti-NMDAR1 into the dentate gyrus of adult female rats. Control animals were injected with either CSF obtained from three epilepsy patients (ganglioglioma, posttraumatic epilepsy, focal cortical dysplasia) lacking anti-NMDAR or saline. Intracellular recordings from dentate gyrus granule cells showed a significant reduction of the NMDAR-evoked excitatory postsynaptic potentials (NMDAR-EPSPs) in animals treated with anti-NMDAR. As a consequence of this, action potential firing in these cells by NMDAR-EPSPs was significantly impaired. Long-term potentiation in the dentate gyrus was also significantly reduced in rats injected with anti-NMDAR as compared to control animals. This was accompanied by a significantly impaired learning performance in the Morris water maze hidden platform task when the animals had been injected with anti-NMDAR antibody-containing CSF. Our findings suggest that anti-NMDAR lead to reduced NMDAR function in vivo which could contribute to the memory impairment found in patients with anti-NMDAR encephalitis.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato/complicações , Autoanticorpos/administração & dosagem , Giro Denteado/efeitos dos fármacos , Transtornos da Memória/etiologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Adulto , Animais , Encefalite Antirreceptor de N-Metil-D-Aspartato/líquido cefalorraquidiano , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Humanos , Potenciação de Longa Duração , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Técnicas Estereotáxicas
11.
Neural Plast ; 2014: 684238, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25405036

RESUMO

High-frequency magnetic stimulation (HFMS) can elicit N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) at Schaffer collateral-CA1 pyramidal cell synapses. Here, we investigated the priming effect of HFMS on the subsequent magnitude of electrically induced LTP in the CA1 region of rat hippocampal slices using field excitatory postsynaptic potential (fEPSP) recordings. In control slices, electrical high-frequency conditioning stimulation (CS) could reliably induce LTP. In contrast, the same CS protocol resulted in long-term depression when HFMS was delivered to the slice 30 min prior to the electrical stimulation. HFMS-priming was diminished when applied in the presence of the metabotropic glutamate receptor antagonists (RS)-α-methylserine-O-phosphate (MSOP) and (RS)-α-methyl-4-carboxyphenylglycine (MCPG). Moreover, when HFMS was delivered in the presence of the NMDA receptor-antagonist D-2-amino-5-phosphonovalerate (50 µM), CS-induced electrical LTP was again as high as under control conditions in slices without priming. These results demonstrate that HFMS significantly reduced the propensity of subsequent electrical LTP and show that both metabotropic glutamate and NMDA receptor activation were involved in this form of HFMS-induced metaplasticity.


Assuntos
Região CA1 Hipocampal/fisiologia , Potenciação de Longa Duração , Animais , Estimulação Elétrica , Campos Magnéticos , Masculino , Ratos , Receptores de N-Metil-D-Aspartato/fisiologia
12.
Neural Plast ; 2012: 237913, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22792490

RESUMO

Hyperpolarization-activated, cyclic nucleotide-gated nonselective (HCN) channels modulate both membrane potential and resistance and play a significant role in synaptic plasticity. We compared the influence of HCN channels on long-term depression (LTD) at the medial perforant path-granule cell synapse in early postnatal (P9-15) and adult (P30-60) rats. LTD was elicited in P9-15 slices using low-frequency stimulation (LFS, 900 pulses, 1 Hz; 80 ± 4% of baseline). Application of the specific HCN channel blocker ZD7288 (10 µM) before LFS significantly enhanced LTD (62 ± 4%; P < 0.01), showing HCN channels restrain LTD induction. However, when ZD7288 was applied after LFS, LTD was similar to control values and significantly different from the values obtained with ZD7288 application before LFS (81 ± 5%; P < 0.01), indicating that HCN channels do not modulate LTD expression. LTD in slices from adult rats were only marginally lower compared to those in P9-15 slices (85 ± 6%), but bath application of ZD7288 prior to LFS resulted in the same amount of LTD (85 ± 5%). HCN channels in adult tissue hence lose their modulatory effect. In conclusion, we found that HCN channels at the medial perforant path-granule cell synapse compromise LFS-associated induction, but not expression of LTD in early postnatal, but not in adult, rats.


Assuntos
Cardiotônicos/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/fisiologia , Via Perfurante/efeitos dos fármacos , Pirimidinas/farmacologia , Sinapses/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/efeitos dos fármacos , Grânulos Citoplasmáticos/efeitos dos fármacos , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Técnicas In Vitro , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Técnicas de Patch-Clamp , Canais de Potássio/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos
13.
Learn Mem ; 16(12): 769-76, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19940037

RESUMO

HCN channels play a fundamental role in determining resting membrane potential and regulating synaptic function. Here, we investigated the involvement of HCN channels in basal synaptic transmission and long-term depression (LTD) at the Schaffer collateral-CA1 synapse. Bath application of the HCN channel blocker ZD7288 (10 microM) caused a significant increase in synaptic transmission that was due to an enhancement in AMPA receptor-mediated excitatory postsynaptic potentials. This enhancement was accompanied by a significant decrease in the paired-pulse ratio (PPR), suggesting a presynaptic mechanism. Experiments with the irreversible use-dependent NMDA receptor blocker MK-801 showed that ZD7288 led to an increase in glutamate release probability. LTD induced by brief application of (RS)-3,5-dihydroxyphenylglycine (DHPG, 100 microM, 10 min) was significantly enhanced when HCN channels were blocked by ZD7288 (10 microM) prior to DHPG application. Moreover, the concomitant increase in PPR after DHPG-induced LTD was significantly larger than without ZD7288 bath application. Conversely, ZD7288 application after DHPG washout did not alter DHPG-LTD. A significant enhancement of DHPG-LTD was also observed in HCN1-deficient mice as compared with wild types. However, LTD induced by low-frequency stimulation (LFS) remained unaltered in HCN1-deficient mice, suggesting a differential effect of HCN1 channels on synaptic plasticity constraining DHPG-LTD, but not LFS-LTD.


Assuntos
Região CA1 Hipocampal/citologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Metoxi-Hidroxifenilglicol/análogos & derivados , Canais de Potássio/fisiologia , Sinapses/efeitos dos fármacos , Animais , Biofísica , Região CA1 Hipocampal/fisiologia , Cardiotônicos/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/deficiência , Maleato de Dizocilpina/farmacologia , Estimulação Elétrica/métodos , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Técnicas In Vitro , Potenciação de Longa Duração/fisiologia , Masculino , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Camundongos Knockout , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Técnicas de Patch-Clamp/métodos , Canais de Potássio/deficiência , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/fisiologia
14.
Neurosci Lett ; 467(1): 20-5, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-19800390

RESUMO

Hippocampal synaptic plasticity between Schaffer collaterals and CA1 pyramidal neurons can be induced by activation of N-methyl-d-aspartate receptors (NMDARs) or of metabotropic glutamate receptors (mGluRs). Inhibitory GABAergic interneurons in this region abundantly terminate on pyramidal neurons and may thus influence synaptic plasticity. Although NMDAR-dependent synaptic plasticity is known to be influenced by inhibitory interneurons, little is known about the role of GABA on mGluR-dependent plasticity. Here, we used field potential recordings of the Schaffer collateral-CA1 synapses in rat hippocampal slices in order to study the effect of GABA(A) receptor (GABA(A)R) inhibition on mGluR-dependent long-term depression (LTD). Without GABA(A)R blockade, mGluR-dependent LTD was induced pharmacologically by the group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG, 100 microM, 10 min) as well as electrically by paired-pulse low-frequency stimulation (PP-LFS, 900 paired pulses at 1Hz) resulting in a stable depression of the field response lasting at least 80 min after LTD induction. The GABA(A)R antagonist gabazine (5 microM) itself caused an increase of field responses suggesting an endogenous GABA release inhibiting CA1 field potentials. However, when either DHPG or PP-LFS was applied during GABA(A)R inhibition, the field responses were significantly reduced. Moreover, normalizing these responses to experiments without GABA(A)R blockade, there was no significant effect of gabazine on both DHPG- and PP-LFS-induced LTD. Thus, our results show that mGluR-dependent LTD at Schaffer collateral-CA1 synapses is unaffected by GABA(A)R mediated synaptic transmission.


Assuntos
Antagonistas de Receptores de GABA-A , Hipocampo/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/fisiologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/fisiologia , Estimulação Elétrica , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas GABAérgicos/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , Interneurônios/efeitos dos fármacos , Interneurônios/fisiologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Piridazinas/farmacologia , Ratos , Ratos Wistar , Receptores de GABA-A/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Resorcinóis/farmacologia , Sinapses/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...