Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 96(7): 3682-7, 1999 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-10097097

RESUMO

Alanine-based peptides of defined sequence and length show measurable helix contents, allowing them to be used as a model system both for analyzing the mechanism of helix formation and for investigating the contributions of side-chain interactions to protein stability. Extensive characterization of many peptide sequences with varying amino acid contents indicates that the favorable helicity of alanine-based peptides can be attributed to the large helix-stabilizing propensity of alanine. Based on their analysis of alanine-rich sequences N-terminally linked to a synthetic helix-inducing template, Kemp and coworkers [Kemp, D. S., Boyd, J. G. & Muendel, C. C. (1991) Nature (London) 352, 451-454; Kemp, D. S., Oslick, S. L. & Allen, T. J. (1996) J. Am. Chem. Soc. 118, 4249-4255] argue that alanine is helix-indifferent, however, and that the favorable helix contents of alanine-based peptides must have some other explanation. Here, we show that the helix contents of template-nucleated sequences are influenced strongly by properties of the template-helix junction. A model in which the helix propensities of residues at the template-peptide junction are treated separately brings the results from alanine-based peptides and template-nucleated helices into agreement. The resulting model provides a physically plausible resolution of the discrepancies between the two systems and allows the helix contents of both template-nucleated and standard peptide helices to be predicted by using a single set of helix propensities. Helix formation in both standard peptides and template-peptide conjugates can be attributed to the large intrinsic helix-forming tendency of alanine.


Assuntos
Alanina/química , Oligopeptídeos/química , Peptídeos/química , Estrutura Secundária de Proteína , Modelos Químicos , Modelos Moleculares , Conformação Proteica
2.
Biochemistry ; 38(3): 855-61, 1999 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-9893979

RESUMO

The sodium channel initiates action potentials by opening in response to membrane depolarization. Fast channel inactivation, which is required for proper physiological function, is mediated by a cytoplasmic loop proposed to occlude the ion pore via a hinged lid mechanism with the triad IFM serving as a hydrophobic "latch". The NMR solution structure of the isolated inactivation gate reveals a stably folded core comprised of an alpha-helix capped by an N-terminal turn, supporting a model in which the tightly folded core containing the latch motif pivots on a more flexible hinge region to occlude the pore during inactivation. The structure, in combination with substituted cysteine mutagenesis experiments, indicates that the IFM triad and adjacent Thr are essential components of the latch and suggests differing roles for the residues of the IFMT motif in fast inactivation.


Assuntos
Ativação do Canal Iônico , Bloqueadores dos Canais de Sódio , Canais de Sódio/química , Sequência de Aminoácidos , Animais , Química Encefálica , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Neuropeptídeos/antagonistas & inibidores , Neuropeptídeos/química , Neuropeptídeos/fisiologia , Ressonância Magnética Nuclear Biomolecular , Ratos , Canais de Sódio/fisiologia , Soluções
4.
Biochemistry ; 36(28): 8435-42, 1997 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-9214287

RESUMO

Circular dichroism and NH exchange are compared directly as techniques for measuring helix content in peptides and the parameters of the helix-coil transition. To cover a broad range of helix contents, alanine-based peptides with chain lengths varying from 12 to 22 residues are examined over the temperature range from 0.6 to 26.9 degrees C in 1 M sodium chloride, 2H2O. Helix-coil transition theory independently fits both circular dichroism and exchange data, but the helix contents measured by exchange are larger than those measured by circular dichroism. The two techniques are brought into agreement by removing the assumption that the intrinsic chemical exchange rate in the helix is the same as the exchange rate measured for short unstructured model peptides. This modification allows the circular dichroism and NH exchange data to be described by the same set of helix parameters and indicates that the intrinsic exchange rate in the presence of helical structure is reduced approximately 17% relative to the rates measured in unstructured models. To test the possibility that this effect is electrostatic in origin, the sensitivity of the exchange reaction to ionic strength is determined. A substantial dependence of exchange rate on ionic strength is found, but the form of the dependence is complex. In studies of the exchange rates of native proteins, the exchange-competent form of the protein is assumed to exchange with the same rate constant as a blocked dipeptide with the identical amino acid sequences. Our result suggests that this assumption will be seriously in error in some cases because of charge effects in the protein.


Assuntos
Peptídeos/química , Estrutura Secundária de Proteína , Dicroísmo Circular , Ligação de Hidrogênio , Cinética , Concentração Osmolar , Conformação Proteica , Cloreto de Sódio/farmacologia , Temperatura
5.
Protein Sci ; 5(12): 2623-37, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8976571

RESUMO

The helix propagation and N-cap propensities of the amino acids have been measured in alanine-based peptides in 40 volume percent trifluoroethanol (40% TFE) to determine if this helix-stabilizing solvent uniformly affects all amino acids. The propensities in 40% TFE are compared with revised values of the helix parameters of alanine-based peptides in water. Revision of the propensities in water is the result of redefining the capping statistical weights and evaluating the helix nucleation constant with N-capping explicitly included in the helix-coil model. The propagation propensities of all amino acids increase in 40% TFE relative to water, but the increases are highly variable. In water, all beta-branched and beta-substituted amino acids are helix breakers. In 40% TFE, the propagation propensities of the nonpolar amino acids increase greatly, leaving charged and neutral polar, beta-substituted amino acids as helix breakers. Glycine and proline are strong helix breakers in both solvents. Free energy differences for helix propagation (delta delta G) between alanine and other nonpolar amino acids are twice as large in water as predicted from side-chain conformational entropies, but delta delta G values in 40% TFE are close to those predicted from side-chain entropies. This dependence of delta delta G on the solvent points to a specific role of water in determining the relative helix propensities of the nonpolar amino acids. The N-cap propensities converge toward a common value in 40% TFE, suggesting that differential solvation by water contributes to the diversity of N-cap values shown by the amino acids.


Assuntos
Peptídeos/química , Dobramento de Proteína , Alanina/química , Sequência de Aminoácidos , Dados de Sequência Molecular , Trifluoretanol
6.
Protein Sci ; 5(8): 1687-96, 1996 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8844857

RESUMO

Models for the 3(10)-helix/coil and pi-helix/coil equilibria have been derived. The theory is based on classifying residues into helical or nonhelical (coil) conformations. Statistical weights are assigned to residues in a helical conformation with an associated helical hydrogen bond, a helical conformation with no hydrogen bond, an N-cap position, a C-cap position, or the reference coil conformation. The models for alpha-helix formation and 3(10)-helix formation have also been combined to describe a three-state equilibrium in which alpha-helical, 3(10)-helical, and coil conformations are populated. The results are compared with the modified Lifson-Roig theory for the alpha-helix/coil equilibrium. The comparison accounts for the experimental observations that 3(10)-helices tend to be short and pi-helices are not favored for any length. This work may provide a framework for quantitatively rationalizing experimental work on isolated 3(10)-helices and mixed 3(10)-/alpha-helices.


Assuntos
Conformação Proteica , Proteínas/química , Simulação por Computador , Ligação de Hidrogênio , Modelos Moleculares
7.
Proc Natl Acad Sci U S A ; 93(5): 1982-7, 1996 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-8700871

RESUMO

When NMR hydrogen exchange was used previously to monitor the kinetics of RNase A unfolding, some peptide NH protons were found to show EX2 exchange (detected by base catalysis) in addition to the expected EX1 exchange, whose rate is limited by the kinetic unfolding process. In earlier work, two groups showed independently that a restricted two-process model successfully fits published hydrogen exchange rates of native RNase A in the range 0-0.7 M guanidinium chloride. We find that this model predicts properties that are very different from the observed properties of the EX2 exchange reactions of RNase A in conditions where guanidine-induced unfolding takes place. The model predicts that EX2 exchange should be too fast to measure by the technique used, whereas it is readily measurable. Possible explanations for the contradiction are considered here, and we show that removing the restriction from the earlier two-process model is sufficient to resolve the contradiction; instead of specifying that exchange caused by global unfolding occurs by the EX2 mechanism, we allow it to occur by the general mechanism, which includes both the EX1 and EX2 cases. It is logical to remove this restriction because global unfolding of RNase A is known to give rise to EX1 exchange in these unfolding conditions. Resolving the contradiction makes it possible to determine whether populated unfolding intermediates contribute to the EX2 exchange, and this question is considered elsewhere. The results and simulations indicate that moderate or high denaturant concentrations readily give rise to EX1 exchange in native proteins. Earlier studies showed that hydrogen exchange in native proteins typically occurs by the EX2 mechanism but that high temperatures or pH values above 7 may give rise to EX1 exchange. High denaturant concentrations should be added to the list of variables likely to cause EX1 exchange.


Assuntos
Ribonuclease Pancreático/química , Sequência de Aminoácidos , Guanidina , Guanidinas , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Desnaturação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Temperatura , Termodinâmica
8.
Protein Sci ; 4(11): 2383-91, 1995 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8563636

RESUMO

We introduce here i, i + 3 and i, i + 4 side chain interactions into the modified Lifson-Roig helix-coil theory of Doig et al. (1994, Biochemistry 33:3396-3403). The helix/coil equilibrium is a function of initiation, propagation, capping, and side chain interaction parameters. If each of these parameters is known, the helix content of any isolated peptide can be predicted. The model considers every possible conformation of a peptide, is not limited to peptides with only a single helical segment, and has physically meaningful parameters. We apply the theory to measure the i, i + 4 interaction energies between Phe and Met side chains. Peptides with these residues spaced i, i + 4 are significantly more helical than controls where they are spaced i, i + 5. Application of the model yields delta G for the Phe-Met orientation to be -0.75 kcal.mol-1, whereas that for the Met-Phe orientation is -0.54 kcal.mol-1. These orientational preferences can be explained, in part, by rotamer preferences for the interacting side chains. We place Phe-Met i, i + 4 at the N-terminus, the C-terminus, and in the center of the host peptide. The model quantitatively predicts the observed helix contents using a single parameter for the side chain-side chain interaction energy. This result indicates that the model works well even when the interaction is at different locations in the helix.


Assuntos
Metionina/química , Modelos Químicos , Fenilalanina/química , Estrutura Secundária de Proteína , Sequência de Aminoácidos , Dicroísmo Circular , Estabilidade de Medicamentos , Dados de Sequência Molecular , Dobramento de Proteína , Termodinâmica
9.
Biochemistry ; 33(25): 7760-7, 1994 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-8011641

RESUMO

Amide proton exchange measured by one-dimensional 15N-edited proton NMR has been used to probe helical structure in an alanine-based peptide. This study is the first report of individual peptide NH exchange rates determined in a simple, repeating sequence peptide whose helical structure can be predicted by helix-coil theory. Measured protection factors directly demonstrate that the ends of the helix are frayed. The protection factors are compared to the Lifson-Roig theory, modified to include N-capping, using known values for helix propensities and N-cap propensities. Base-catalyzed exchange rates are shown to measure the extent of hydrogen bonding of the peptide NHs, and the results are fitted by a simple model in which hydrogen bonding of the peptide NH group provides protection and no exchange occurs from the hydrogen-bonded state. Protection from acid-catalyzed exchange correlates with hydrogen bonding by both the NH and CO groups of a peptide unit: the data are fitted by a model in which exchange occurs only when both hydrogen bonds formed by a peptide unit are broken. This result indicates that acid-catalyzed exchange occurs by the O-protonation mechanism, in agreement with earlier work [Perrin & Arrhenius (1982) J. Am. Chem. Soc. 104, 6693-6696; Perrin et al. (1984) J. Am. Chem. Soc. 106, 2749-2753; Tüchsen & Woodward (1985) J. Mol. Biol. 185, 421-430].


Assuntos
Amidas/química , Espectroscopia de Ressonância Magnética/métodos , Peptídeos/química , Estrutura Secundária de Proteína , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Prótons
10.
Biochemistry ; 31(5): 1263-9, 1992 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-1310608

RESUMO

The kinetics of amide proton exchange (1H----2H) have been measured by proton nuclear magnetic resonance spectroscopy for a set of helical peptides with the generic formula Ac-(AAKAA)m Y-NH2 and with chain lengths varying from 6 to 51 residues. The integrated intensity of the amide resonances has been measured as a function of time in 2H2O at pH* 2.50. Exchange kinetics for these peptides can be modeled by applying the Lifson-Roig treatment for the helix-to-coil transition. The Lifson-Roig equation is used to compute the probability that each residue is helical, as defined by its backbone (phi, psi) angles. A recursion formula then is used to find the probability that the backbone amide proton of each residue is hydrogen bonded. The peptide helix can be treated as a homopolymer, and direct exchange from the helix can be neglected. The expression for the exchange kinetics contains only three unknown parameters: the rate constant for exchange of a non-hydrogen-bonded (random coil) backbone amide proton and the nucleation (v2) and propagation (w) parameters of the Lifson-Roig theory. The fit of the exchange curves to these three parameters is very good, and the values for v2 and w agree with those derived from circular dichroism studies of the thermally-induced unfolding of related peptides [Scholtz, J.M., Qian, H., York, E.J., Stewart, J.M., & Baldwin, R.L. (1991) Biopolymers (in press]).


Assuntos
Amidas/química , Peptídeos/química , Sequência de Aminoácidos , Dicroísmo Circular , Desenho de Fármacos , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Peptídeos/síntese química , Conformação Proteica , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...