Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet J ; 293: 105955, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36781018

RESUMO

Mechanical properties of arena surfaces are extrinsic factors for musculoskeletal injury. Vertical impact forces of harrowed and compacted cushion were measured at five locations on 12 arena surfaces (five dirt, seven synthetic [dirt and fiber]). Eight variables related to impact force, displacement, and acceleration were calculated. Surface temperature, cushion depth and moisture content were also measured. The effects of surface material type (dirt/synthetic) and cushion compaction (harrowed/compacted) on vertical impact properties were assessed using an analysis of variance. Relationships of manageable surface properties with vertical impact forces were examined through correlations. Compacted cushion exhibited markedly higher vertical impact force and deceleration with lower vertical displacement than harrowed cushion (P < 0.001), and the effect was greater on dirt than synthetic surfaces (P = 0.039). Vertical displacement (P = 0.021) and soil rebound (P = 0.005) were the only variables affected by surface type. Surface compaction (harrowed, compacted) had a significantly greater effect on vertical impact forces than surface type (dirt, synthetic). By reducing surface compaction through harrowing, extrinsic factors related to musculoskeletal injury risk are reduced. These benefits were more pronounced on dirt than synthetic surfaces. These results indicate that arena owners should regularly harrow surfaces, particularly dirt surfaces.


Assuntos
Corrida , Animais , Propriedades de Superfície
2.
Vet J ; 291: 105930, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36427603

RESUMO

Shear forces at the surface-hoof interface affect hoof slide, surface grip, forces transferred to the limb, and injury risk. However, the variation in shear forces among surfaces with different compositions have not been quantified. Shear ground reaction forces were measured on five dirt and seven synthetic arena surfaces. Cohesion/adhesion and angle of internal friction/coefficient of friction were calculated. Surface composition, surface temperature, cushion depth, and moisture content were also measured. The effects of surface material (dirt/synthetic) on shear properties were assessed using analysis of variance (ANOVA; P < 0.05). The relationships between surface composition or management properties and shear properties were analyzed using linear correlation. Shear properties were not different between dirt and synthetic surface categories; however, surface fiber content was correlated with adhesion and coefficient of friction. These correlations predict that more fiber will decrease soil adhesion (r = -0.75; P < 0.01) and increase the coefficient of friction (r = 0.81; P < 0.01). Furthermore, maximum shear force was significantly correlated with cushion depth (r = 0.61; P < 0.01) and moisture content (r = 0.57; P < 0.01), where shear force was greater on surfaces with thicker cushion layers or higher moisture content. The findings suggest that shear mechanical behavior is more dependent on surface composition than surface material categories (dirt/synthetic) and also indicate that arena owners can influence shear forces by adjusting either surface composition or management.


Assuntos
Casco e Garras , Cavalos , Animais , Propriedades de Superfície , Resistência ao Cisalhamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...