Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
JCI Insight ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935435

RESUMO

Endoplasmic reticulum (ER) stress and proinsulin misfolding are heralded as contributing factors to ß-cell dysfunction in Type 2 diabetes (T2D), yet how ER function becomes compromised is not well understood. Recent data identifies altered ER redox homeostasis as a critical mechanism that contributes to insulin granule loss in diabetes. Hyperoxidation of the ER delays proinsulin export and limits the proinsulin supply available for insulin granule formation. In this report, we identified glucose metabolism as a critical determinant in the redox homeostasis of the ER. Using multiple ß-cell models, we showed that loss of mitochondrial function or inhibition of cellular metabolism elicited ER hyperoxidation and delayed ER proinsulin export. Our data further demonstrated that ß-cell ER redox homeostasis was supported by the metabolic supply of reductive redox donors. We showed that limiting NADPH and thioredoxin flux delayed ER proinsulin export, whereas Txnip suppression restored ER redox and proinsulin trafficking. Taken together, we propose that ß-cell ER redox homeostasis is buffered by cellular redox donor cycles, which are maintained through active glucose metabolism.

2.
Am J Physiol Endocrinol Metab ; 326(3): E245-E257, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38265287

RESUMO

Delayed Golgi export of proinsulin has recently been identified as an underlying mechanism leading to insulin granule loss and ß-cell secretory defects in type 2 diabetes (T2D). Because acidification of the Golgi lumen is critical for proinsulin sorting and delivery into the budding secretory granule, we reasoned that dysregulation of Golgi pH may contribute to proinsulin trafficking defects. In this report, we examined pH regulation of the Golgi and identified a partial alkalinization of the Golgi lumen in a diabetes model. To further explore this, we generated a ß-cell specific knockout (KO) of the v0a2 subunit of the v-ATPase pump, which anchors the v-ATPase to the Golgi membrane. Although loss of v0a2 partially neutralized Golgi pH and was accompanied by distension of the Golgi cisternae, proinsulin export from the Golgi and insulin granule formation were not affected. Furthermore, ß-cell function was well preserved. ß-cell v0a2 KO mice exhibited normal glucose tolerance in both sexes, no genotypic difference to diet-induced obesity, and normal insulin secretory responses. Collectively, our data demonstrate the v0a2 subunit contributes to ß-cell Golgi pH regulation but suggest that additional disturbances to Golgi structure and function contribute to proinsulin trafficking defects in diabetes.NEW & NOTEWORTHY Delayed proinsulin export from the Golgi in diabetic ß-cells contributes to decreased insulin granule formation, but the underlying mechanisms are not clear. Here, we explored if dysregulation of Golgi pH can alter Golgi function using ß-cell specific knockout (KO) of the Golgi-localized subunit of the v-ATPase, v0a2. We show that partial alkalinization of the Golgi dilates the cisternae, but does not affect proinsulin export, insulin granule formation, insulin secretion, or glucose homeostasis.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animais , Feminino , Masculino , Camundongos , Adenosina Trifosfatases , Diabetes Mellitus Tipo 2/genética , Glucose , Insulina , Proinsulina/genética
3.
Function (Oxf) ; 3(6): zqac051, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325514

RESUMO

Defects in the pancreatic ß-cell's secretion system are well-described in type 2 diabetes (T2D) and include impaired proinsulin processing and a deficit in mature insulin-containing secretory granules; however, the cellular mechanisms underlying these defects remain poorly understood. To address this, we used an in situ fluorescent pulse-chase strategy to study proinsulin trafficking. We show that insulin granule formation and the appearance of nascent granules at the plasma membrane are decreased in rodent and cell culture models of prediabetes and hyperglycemia. Moreover, we link the defect in insulin granule formation to an early trafficking delay in endoplasmic reticulum (ER) export of proinsulin, which is independent of overt ER stress. Using a ratiometric redox sensor, we show that the ER becomes hyperoxidized in ß-cells from a dietary model of rodent prediabetes and that addition of reducing equivalents restores ER export of proinsulin and insulin granule formation and partially restores ß-cell function. Together, these data identify a critical role for the regulation of ER redox homeostasis in proinsulin trafficking and suggest that alterations in ER redox poise directly contribute to the decline in insulin granule production in T2D. This model highlights a critical link between alterations in ER redox and ER function with defects in proinsulin trafficking in T2D. Hyperoxidation of the ER lumen, shown as hydrogen peroxide, impairs proinsulin folding and disulfide bond formation that prevents efficient exit of proinsulin from the ER to the Golgi. This trafficking defect limits available proinsulin for the formation of insulin secretory granules during the development of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Estado Pré-Diabético , Humanos , Insulina , Proinsulina , Diabetes Mellitus Tipo 2/metabolismo , Estado Pré-Diabético/metabolismo , Insulina Regular Humana/metabolismo , Oxirredução , Homeostase , Retículo Endoplasmático/metabolismo
4.
J Cell Biol ; 221(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36173346

RESUMO

Insulin is synthesized by pancreatic ß-cells and stored into secretory granules (SGs). SGs fuse with the plasma membrane in response to a stimulus and deliver insulin to the bloodstream. The mechanism of how proinsulin and its processing enzymes are sorted and targeted from the trans-Golgi network (TGN) to SGs remains mysterious. No cargo receptor for proinsulin has been identified. Here, we show that chromogranin (CG) proteins undergo liquid-liquid phase separation (LLPS) at a mildly acidic pH in the lumen of the TGN, and recruit clients like proinsulin to the condensates. Client selectivity is sequence-independent but based on the concentration of the client molecules in the TGN. We propose that the TGN provides the milieu for converting CGs into a "cargo sponge" leading to partitioning of client molecules, thus facilitating receptor-independent client sorting. These findings provide a new receptor-independent sorting model in ß-cells and many other cell types and therefore represent an innovation in the field of membrane trafficking.


Assuntos
Grânulos Citoplasmáticos , Complexo de Golgi , Células Secretoras de Insulina , Proinsulina , Vesículas Secretórias , Cromograninas/metabolismo , Grânulos Citoplasmáticos/metabolismo , Complexo de Golgi/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Proinsulina/metabolismo , Vesículas Secretórias/metabolismo
5.
Biomolecules ; 12(2)2022 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35204835

RESUMO

Pancreatic islet ß-cells exhibit tremendous plasticity for secretory adaptations that coordinate insulin production and release with nutritional demands. This essential feature of the ß-cell can allow for compensatory changes that increase secretory output to overcome insulin resistance early in Type 2 diabetes (T2D). Nutrient-stimulated increases in proinsulin biosynthesis may initiate this ß-cell adaptive compensation; however, the molecular regulators of secretory expansion that accommodate the increased biosynthetic burden of packaging and producing additional insulin granules, such as enhanced ER and Golgi functions, remain poorly defined. As these adaptive mechanisms fail and T2D progresses, the ß-cell succumbs to metabolic defects resulting in alterations to glucose metabolism and a decline in nutrient-regulated secretory functions, including impaired proinsulin processing and a deficit in mature insulin-containing secretory granules. In this review, we will discuss how the adaptative plasticity of the pancreatic islet ß-cell's secretory program allows insulin production to be carefully matched with nutrient availability and peripheral cues for insulin signaling. Furthermore, we will highlight potential defects in the secretory pathway that limit or delay insulin granule biosynthesis, which may contribute to the decline in ß-cell function during the pathogenesis of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Nutrientes , Proinsulina/metabolismo
6.
Prim Care Diabetes ; 15(6): 899-909, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34600859

RESUMO

This review comprehensively summarizes epidemiologic evidence of COVID-19 in patients with Type 2 diabetes, explores pathophysiological mechanisms, and integrates recommendations and guidelines for patient management. We found that diabetes was a risk factor for diagnosed infection and poor prognosis of COVID-19. Patients with diabetes may be more susceptible to adverse outcomes associated with SARS-CoV-2 infection due to impaired immune function and possible upregulation of enzymes that mediate viral invasion. The chronic inflammation caused by diabetes, coupled with the acute inflammatory reaction caused by SARS-CoV-2, results in a propensity for inflammatory storm. Patients with diabetes should be aware of their increased risk for COVID-19.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Humanos , Inflamação/diagnóstico , Inflamação/epidemiologia , Fatores de Risco , SARS-CoV-2
7.
Diabetes ; 70(8): 1717-1728, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34039628

RESUMO

The defining feature of pancreatic islet ß-cell function is the precise coordination of changes in blood glucose levels with insulin secretion to regulate systemic glucose homeostasis. While ATP has long been heralded as a critical metabolic coupling factor to trigger insulin release, glucose-derived metabolites have been suggested to further amplify fuel-stimulated insulin secretion. The mitochondrial export of citrate and isocitrate through the citrate-isocitrate carrier (CIC) has been suggested to initiate a key pathway that amplifies glucose-stimulated insulin secretion, though the physiological significance of ß-cell CIC-to-glucose homeostasis has not been established. Here, we generated constitutive and adult CIC ß-cell knockout (KO) mice and demonstrate that these animals have normal glucose tolerance, similar responses to diet-induced obesity, and identical insulin secretion responses to various fuel secretagogues. Glucose-stimulated NADPH production was impaired in ß-cell CIC KO islets, whereas glutathione reduction was retained. Furthermore, suppression of the downstream enzyme cytosolic isocitrate dehydrogenase (Idh1) inhibited insulin secretion in wild-type islets but failed to impact ß-cell function in ß-cell CIC KO islets. Our data demonstrate that the mitochondrial CIC is not required for glucose-stimulated insulin secretion and that additional complexities exist for the role of Idh1 and NADPH in the regulation of ß-cell function.


Assuntos
Ácido Cítrico/metabolismo , Glucose/farmacologia , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Isocitratos/metabolismo , Mitocôndrias/metabolismo , Animais , Citosol/metabolismo , Homeostase/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos
8.
J Diabetes Complications ; 35(3): 107817, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33358523

RESUMO

With the increasing prevalence of obesity, there is a growing awareness of its impact on infectious diseases. In past epidemics of influenza A and Middle East respiratory syndrome (MERS) coronavirus, obesity has been identified as a risk factor influencing the severity of illness in infected persons. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for a large number of deaths and health damages worldwide. Increasing numbers of reports have linked obesity to more severe COVID-19 disease and death. This review focuses on the impact of obesity on patients with COVID-19. We comprehensively analyzed the various mechanisms of obesity affecting the severity of the disease. In addition, on the basis of the vulnerability of people with obesity during the COVID-19 epidemic, we summarized both individual-level and hospital-level prevention and management measures for COVID-19 patients with obesity and discussed the impact of isolation on people with obesity.


Assuntos
COVID-19/complicações , COVID-19/diagnóstico , Obesidade/complicações , Obesidade/diagnóstico , COVID-19/epidemiologia , COVID-19/patologia , Saúde Global , Humanos , Mortalidade , Obesidade/epidemiologia , Obesidade/patologia , Pandemias , Prevalência , Prognóstico , Fatores de Risco , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença
9.
Obes Rev ; 22 Suppl 1: e13097, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32869468

RESUMO

The associations between built and food environments and childhood obesity have been studied extensively. However, the association between the natural environment and childhood obesity has received too little scholarly attention. This study reviewed the literature published before 1 January 2019, which described associations between a full range of natural environmental factors (e.g., rainfall, temperature, sunlight, natural disasters, flood and drought) and weight-related behaviours and childhood obesity. Five cross-sectional studies and one longitudinal study were identified. Measures of natural environmental factors varied across six included studies, falling into five broad categories: weather conditions, altitude, natural disaster risk, air quality and day length. It was found that temperature was a significant weather indicator in most included studies and was associated with a reduction of daily physical activity. Children living in high-altitude areas were more likely to be shorter and heavier than their counterparts in low-altitude areas. Findings of this study will contribute to helping multiple stakeholders, including policy makers and urban planners, and formulate health policies and interventions to mitigate the detrimental impact of the natural environment on childhood obesity. More longitudinal studies should be designed to confirm these effects and explore the potential health effects of more natural environmental factors.


Assuntos
Poluição do Ar , Obesidade Infantil , Criança , Estudos Transversais , Exercício Físico , Humanos , Estudos Longitudinais , Obesidade Infantil/epidemiologia , Obesidade Infantil/etiologia
10.
Mol Metab ; 44: 101140, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33285301

RESUMO

OBJECTIVE: The expression of the interleukin-1 receptor type I (IL-1R) is enriched in pancreatic islet ß-cells, signifying that ligands activating this pathway are important for the health and function of the insulin-secreting cell. Using isolated mouse, rat, and human islets, we identified the cytokine IL-1α as a highly inducible gene in response to IL-1R activation. In addition, IL-1α is elevated in mouse and rat models of obesity and Type 2 diabetes. Since less is known about the biology of IL-1α relative to IL-1ß in pancreatic tissue, our objective was to investigate the contribution of IL-1α to pancreatic ß-cell function and overall glucose homeostasis in vivo. METHODS: We generated a novel mouse line with conditional IL-1α alleles and subsequently produced mice with either pancreatic- or myeloid lineage-specific deletion of IL-1α. RESULTS: Using this in vivo approach, we discovered that pancreatic (IL-1αPdx1-/-), but not myeloid-cell, expression of IL-1α (IL-1αLysM-/-) was required for the maintenance of whole body glucose homeostasis in both male and female mice. Moreover, pancreatic deletion of IL-1α led to impaired glucose tolerance with no change in insulin sensitivity. This observation was consistent with our finding that glucose-stimulated insulin secretion was reduced in islets isolated from IL-1αPdx1-/- mice. Alternatively, IL-1αLysM-/- mice (male and female) did not have any detectable changes in glucose tolerance, respiratory quotient, physical activity, or food intake when compared with littermate controls. CONCLUSIONS: Taken together, we conclude that there is an important physiological role for pancreatic IL-1α to promote glucose homeostasis by supporting glucose-stimulated insulin secretion and islet ß-cell mass in vivo.


Assuntos
Glucose/metabolismo , Homeostase , Secreção de Insulina/fisiologia , Interleucina-1alfa/metabolismo , Células Mieloides/metabolismo , Pâncreas/metabolismo , Animais , Linhagem Celular , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Intolerância à Glucose/metabolismo , Proteínas de Homeodomínio , Inflamação , Insulina/sangue , Insulina/metabolismo , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Ratos , Receptores de Citocinas , Receptores Tipo I de Interleucina-1/metabolismo , Transativadores
11.
J Steroid Biochem Mol Biol ; 195: 105468, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31536768

RESUMO

Clinical glucocorticoid use, and diseases that produce elevated circulating glucocorticoids, promote drastic changes in body composition and reduction in whole body insulin sensitivity. Because steroid-induced diabetes is the most common form of drug-induced hyperglycemia, we investigated mechanisms underlying the recognized phenotypes associated with glucocorticoid excess. Male C57BL/6 J mice were exposed to either 100ug/mL corticosterone (cort) or vehicle in their drinking water. Body composition measurements revealed an increase in fat mass with drastically reduced lean mass during the first week (i.e., seven days) of cort exposure. Relative to the vehicle control group, mice receiving cort had a significant reduction in insulin sensitivity (measured by insulin tolerance test) five days after drug intervention. The increase in insulin resistance significantly correlated with an increase in the number of Ki-67 positive ß-cells. Moreover, the ability to switch between fuel sources in liver tissue homogenate substrate oxidation assays revealed reduced metabolic flexibility. Furthermore, metabolomics analyses revealed a decrease in liver glycolytic metabolites, suggesting reduced glucose utilization, a finding consistent with onset of systemic insulin resistance. Physical activity was reduced, while respiratory quotient was increased, in mice receiving corticosterone. The majority of metabolic changes were reversed upon cessation of the drug regimen. Collectively, we conclude that changes in body composition and tissue level substrate metabolism are key components influencing the reductions in whole body insulin sensitivity observed during glucocorticoid administration.


Assuntos
Corticosterona/farmacologia , Glucocorticoides/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Fígado/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Animais , Composição Corporal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dieta Hiperlipídica , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Resistência à Insulina , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Peritonite/induzido quimicamente , Peritonite/metabolismo , Tioglicolatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...