Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 7(8): 1359-1370, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31292145

RESUMO

Progressive tumor growth is associated with deficits in the immunity generated against tumor antigens. Vaccines targeting tumor neoepitopes have the potential to address qualitative defects; however, additional mechanisms of immune failure may underlie tumor progression. In such cases, patients would benefit from additional immune-oncology agents targeting potential mechanisms of immune failure. This study explores the identification of neoepitopes in the MC38 colon carcinoma model by comparison of tumor to normal DNA and tumor RNA sequencing technology, as well as neoepitope delivery by both peptide- and adenovirus-based vaccination strategies. To improve antitumor efficacies, we combined the vaccine with a group of rationally selected immune-oncology agents. We utilized an IL15 superagonist to enhance the development of antigen-specific immunity initiated by the neoepitope vaccine, PD-L1 blockade to reduce tumor immunosuppression, and a tumor-targeted IL12 molecule to facilitate T-cell function within the tumor microenvironment. Analysis of tumor-infiltrating leukocytes demonstrated this multifaceted treatment regimen was required to promote the influx of CD8+ T cells and enhance the expression of transcripts relating to T-cell activation/effector function. Tumor-targeted IL12 resulted in a marked increase in clonality of T-cell repertoire infiltrating the tumor, which when sculpted with the addition of either a peptide or adenoviral neoepitope vaccine promoted efficient tumor clearance. In addition, the neoepitope vaccine induced the spread of immunity to neoepitopes expressed by the tumor but not contained within the vaccine. These results demonstrate the importance of combining neoepitope-targeting vaccines with a multifaceted treatment regimen to generate effective antitumor immunity.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Epitopos/imunologia , Neoplasias/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Terapia Combinada , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Imunomodulação , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Resultado do Tratamento , Carga Tumoral , Vacinação
2.
mBio ; 7(4)2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27531911

RESUMO

UNLABELLED: Syntrophus aciditrophicus is a model syntrophic bacterium that degrades key intermediates in anaerobic decomposition, such as benzoate, cyclohexane-1-carboxylate, and certain fatty acids, to acetate when grown with hydrogen-/formate-consuming microorganisms. ATP formation coupled to acetate production is the main source for energy conservation by S. aciditrophicus However, the absence of homologs for phosphate acetyltransferase and acetate kinase in the genome of S. aciditrophicus leaves it unclear as to how ATP is formed, as most fermentative bacteria rely on these two enzymes to synthesize ATP from acetyl coenzyme A (CoA) and phosphate. Here, we combine transcriptomic, proteomic, metabolite, and enzymatic approaches to show that S. aciditrophicus uses AMP-forming, acetyl-CoA synthetase (Acs1) for ATP synthesis from acetyl-CoA. acs1 mRNA and Acs1 were abundant in transcriptomes and proteomes, respectively, of S. aciditrophicus grown in pure culture and coculture. Cell extracts of S. aciditrophicus had low or undetectable acetate kinase and phosphate acetyltransferase activities but had high acetyl-CoA synthetase activity under all growth conditions tested. Both Acs1 purified from S. aciditrophicus and recombinantly produced Acs1 catalyzed ATP and acetate formation from acetyl-CoA, AMP, and pyrophosphate. High pyrophosphate levels and a high AMP-to-ATP ratio (5.9 ± 1.4) in S. aciditrophicus cells support the operation of Acs1 in the acetate-forming direction. Thus, S. aciditrophicus has a unique approach to conserve energy involving pyrophosphate, AMP, acetyl-CoA, and an AMP-forming, acetyl-CoA synthetase. IMPORTANCE: Bacteria use two enzymes, phosphate acetyltransferase and acetate kinase, to make ATP from acetyl-CoA, while acetate-forming archaea use a single enzyme, an ADP-forming, acetyl-CoA synthetase, to synthesize ATP and acetate from acetyl-CoA. Syntrophus aciditrophicus apparently relies on a different approach to conserve energy during acetyl-CoA metabolism, as its genome does not have homologs to the genes for phosphate acetyltransferase and acetate kinase. Here, we show that S. aciditrophicus uses an alternative approach, an AMP-forming, acetyl-CoA synthetase, to make ATP from acetyl-CoA. AMP-forming, acetyl-CoA synthetases were previously thought to function only in the activation of acetate to acetyl-CoA.


Assuntos
Acetilcoenzima A/metabolismo , Trifosfato de Adenosina/metabolismo , Coenzima A Ligases/metabolismo , Deltaproteobacteria/enzimologia , Deltaproteobacteria/metabolismo , Difosfatos/metabolismo , Acetatos/metabolismo , Perfilação da Expressão Gênica , Metaboloma , Proteoma/análise
3.
Stand Genomic Sci ; 11: 2, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26744606

RESUMO

Methanospirillum hungatei strain JF1 (DSM 864) is a methane-producing archaeon and is the type species of the genus Methanospirillum, which belongs to the family Methanospirillaceae within the order Methanomicrobiales. Its genome was selected for sequencing due to its ability to utilize hydrogen and carbon dioxide and/or formate as a sole source of energy. Ecologically, M. hungatei functions as the hydrogen- and/or formate-using partner with many species of syntrophic bacteria. Its morphology is distinct from other methanogens with the ability to form long chains of cells (up to 100 µm in length), which are enclosed within a sheath-like structure, and terminal cells with polar flagella. The genome of M. hungatei strain JF1 is the first completely sequenced genome of the family Methanospirillaceae, and it has a circular genome of 3,544,738 bp containing 3,239 protein coding and 68 RNA genes. The large genome of M. hungatei JF1 suggests the presence of unrecognized biochemical/physiological properties that likely extend to the other Methanospirillaceae and include the ability to form the unusual sheath-like structure and to successfully interact with syntrophic bacteria.

4.
Front Microbiol ; 6: 115, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25717324

RESUMO

Microbial syntrophy is a vital metabolic interaction necessary for the complete oxidation of organic biomass to methane in all-anaerobic ecosystems. However, this process is thermodynamically constrained and represents an ecosystem-level metabolic bottleneck. To gain insight into the physiology of this process, a shotgun proteomics approach was used to quantify the protein landscape of the model syntrophic metabolizer, Syntrophomonas wolfei, grown axenically and syntrophically with Methanospirillum hungatei. Remarkably, the abundance of most proteins as represented by normalized spectral abundance factor (NSAF) value changed very little between the pure and coculture growth conditions. Among the most abundant proteins detected were GroEL and GroES chaperonins, a small heat shock protein, and proteins involved in electron transfer, beta-oxidation, and ATP synthesis. Several putative energy conservation enzyme systems that utilize NADH and ferredoxin were present. The abundance of an EtfAB2 and the membrane-bound iron-sulfur oxidoreductase (Swol_0698 gene product) delineated a potential conduit for electron transfer between acyl-CoA dehydrogenases and membrane redox carriers. Proteins detected only when S. wolfei was grown with M. hungatei included a zinc-dependent dehydrogenase with a GroES domain, whose gene is present in genomes in many organisms capable of syntrophy, and transcriptional regulators responsive to environmental stimuli or the physiological status of the cell. The proteomic analysis revealed an emphasis on macromolecular stability and energy metabolism by S. wolfei and presence of regulatory mechanisms responsive to external stimuli and cellular physiological status.

5.
Proc Natl Acad Sci U S A ; 109(29): 11812-7, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22753492

RESUMO

Archaea have a self-assembling proteinaceous surface (S-) layer as the primary and outermost boundary of their cell envelopes. The S-layer maintains structural rigidity, protects the organism from adverse environmental elements, and yet provides access to all essential nutrients. We have determined the crystal structure of one of the two "homologous" tandem polypeptide repeats that comprise the Methanosarcina acetivorans S-layer protein and propose a high-resolution model for a microbial S-layer. The molecular features of our hexameric S-layer model recapitulate those visualized by medium resolution electron microscopy studies of microbial S-layers and greatly expand our molecular view of S-layer dimensions, porosity, and symmetry. The S-layer model reveals a negatively charged molecular sieve that presents both a charge and size barrier to restrict access to the cell periplasmic-like space. The ß-sandwich folds of the S-layer protein are structurally homologous to eukaryotic virus envelope proteins, suggesting that Archaea and viruses have arrived at a common solution for protective envelope structures. These results provide insight into the evolutionary origins of primitive cell envelope structures, of which the S-layer is considered to be among the most primitive: it also provides a platform for the development of self-assembling nanomaterials with diverse functional and structural properties.


Assuntos
Glicoproteínas de Membrana/metabolismo , Methanosarcina/metabolismo , Modelos Moleculares , Peptídeos/química , Conformação Proteica , Cristalografia por Raios X , Evolução Molecular , Glicoproteínas de Membrana/ultraestrutura , Microscopia Eletrônica
6.
Archaea ; 2012: 873589, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22666082

RESUMO

Many archaeal cell envelopes contain a protein coat or sheath composed of one or more surface exposed proteins. These surface layer (S-layer) proteins contribute structural integrity and protect the lipid membrane from environmental challenges. To explore the species diversity of these layers in the Methanosarcinaceae, the major S-layer protein in Methanosarcina barkeri strain Fusaro was identified using proteomics. The Mbar_A1758 gene product was present in multiple forms with apparent sizes of 130, 120, and 100 kDa, consistent with post-translational modifications including signal peptide excision and protein glycosylation. A protein with features related to the surface layer proteins found in Methanosarcina acetivorans C2A and Methanosarcina mazei Goel was identified in the M. barkeri genome. These data reveal a distinct conserved protein signature with features and implied cell surface architecture in the Methanosarcinaceae that is absent in other archaea. Paralogous gene expression patterns in two Methanosarcina species revealed abundant expression of a single S-layer paralog in each strain. Respective promoter elements were identified and shown to be conserved in mRNA coding and upstream untranslated regions. Prior M. acetivorans genome annotations assigned S-layer or surface layer associated roles of eighty genes: however, of 68 examined none was significantly expressed relative to the experimentally determined S-layer gene.


Assuntos
Glicoproteínas de Membrana/análise , Methanosarcina/química , DNA Arqueal/genética , Expressão Gênica , Genes Arqueais , Genoma Arqueal , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Methanosarcina/genética , Peso Molecular , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Proteômica/métodos
7.
Stand Genomic Sci ; 7(1): 91-106, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23450070

RESUMO

Syntrophobacter fumaroxidans strain MPOB(T) is the best-studied species of the genus Syntrophobacter. The species is of interest because of its anaerobic syntrophic lifestyle, its involvement in the conversion of propionate to acetate, H2 and CO2 during the overall degradation of organic matter, and its release of products that serve as substrates for other microorganisms. The strain is able to ferment fumarate in pure culture to CO2 and succinate, and is also able to grow as a sulfate reducer with propionate as an electron donor. This is the first complete genome sequence of a member of the genus Syntrophobacter and a member genus in the family Syntrophobacteraceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,990,251 bp long genome with its 4,098 protein-coding and 81 RNA genes is a part of the Microbial Genome Program (MGP) and the Genomes to Life (GTL) Program project.

8.
BMC Microbiol ; 10: 62, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20178638

RESUMO

BACKGROUND: The archaeon, Methanosarcina acetivorans strain C2A forms methane, a potent greenhouse gas, from a variety of one-carbon substrates and acetate. Whereas the biochemical pathways leading to methane formation are well understood, little is known about the expression of the many of the genes that encode proteins needed for carbon flow, electron transfer and/or energy conservation. Quantitative transcript analysis was performed on twenty gene clusters encompassing over one hundred genes in M. acetivorans that encode enzymes/proteins with known or potential roles in substrate conversion to methane. RESULTS: The expression of many seemingly "redundant" genes/gene clusters establish substrate dependent control of approximately seventy genes for methane production by the pathways for methanol and acetate utilization. These include genes for soluble-type and membrane-type heterodisulfide reductases (hdr), hydrogenases including genes for a vht-type F420 non-reducing hydrogenase, molybdenum-type (fmd) as well as tungsten-type (fwd) formylmethanofuran dehydrogenases, genes for rnf and mrp-type electron transfer complexes, for acetate uptake, plus multiple genes for aha- and atp-type ATP synthesis complexes. Analysis of promoters for seven gene clusters reveal UTR leaders of 51-137 nucleotides in length, raising the possibility of both transcriptional and translational levels of control. CONCLUSIONS: The above findings establish the differential and coordinated expression of two major gene families in M. acetivorans in response to carbon/energy supply. Furthermore, the quantitative mRNA measurements demonstrate the dynamic range for modulating transcript abundance. Since many of these gene clusters in M. acetivorans are also present in other Methanosarcina species including M. mazei, and in M. barkeri, these findings provide a basis for predicting related control in these environmentally significant methanogens.


Assuntos
Carbono/metabolismo , Metano/biossíntese , Methanosarcina/genética , Methanosarcina/metabolismo , Acetatos/metabolismo , Acetatos/farmacologia , Aldeído Oxirredutases/classificação , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , ATPases Bacterianas Próton-Translocadoras/genética , ATPases Bacterianas Próton-Translocadoras/metabolismo , Sequência de Bases , Transporte de Elétrons/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genoma Arqueal , Redes e Vias Metabólicas , Modelos Genéticos , Dados de Sequência Molecular , Família Multigênica , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia , Regiões Promotoras Genéticas , Alinhamento de Sequência
9.
Environ Microbiol ; 12(8): 2289-301, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21966920

RESUMO

Syntrophomonas wolfei is a specialist, evolutionarily adapted for syntrophic growth with methanogens and other hydrogen- and/or formate-using microorganisms. This slow-growing anaerobe has three putative ribosome RNA operons, each of which has 16S rRNA and 23S rRNA genes of different length and multiple 5S rRNA genes. The genome also contains 10 RNA-directed, DNA polymerase genes. Genomic analysis shows that S. wolfei relies solely on the reduction of protons, bicarbonate or unsaturated fatty acids to re-oxidize reduced cofactors. Syntrophomonas wolfei lacks the genes needed for aerobic or anaerobic respiration and has an exceptionally limited ability to create ion gradients. An ATP synthase and a pyrophosphatase were the only systems detected capable of creating an ion gradient. Multiple homologues for ß-oxidation genes were present even though S. wolfei uses a limited range of fatty acids from four to eight carbons in length.Syntrophomonas wolfei, other syntrophic metabolizers with completed genomic sequences, and thermophilic anaerobes known to produce high molar ratios of hydrogen from glucose have genes to produce H(2) from NADH by an electron bifurcation mechanism. Comparative genomic analysis also suggests that formate production from NADH may involve electron bifurcation. A membrane-bound, iron-sulfur oxidoreductase found in S. wolfei and Syntrophus aciditrophicus may be uniquely involved in reverse electron transport during syntrophic fatty acid metabolism. The genome sequence of S. wolfei reveals several core reactions that may be characteristic of syntrophic fatty acid metabolism and illustrates how biological systems produce hydrogen from thermodynamically difficult reactions.


Assuntos
Genoma Bacteriano , Bacilos Gram-Positivos Formadores de Endosporo/genética , Bacilos Gram-Positivos Formadores de Endosporo/metabolismo , Hidrogênio/metabolismo , DNA Bacteriano/genética , Ácidos Graxos/metabolismo , Formiatos/metabolismo , Oxirredução , RNA Ribossômico/genética , Análise de Sequência de DNA
10.
Ann N Y Acad Sci ; 1125: 58-72, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18378587

RESUMO

Syntrophic metabolism is diverse in two respects: phylogenetically with microorganisms capable of syntrophic metabolism found in the Deltaproteobacteria and in the low G+C gram-positive bacteria, and metabolically given the wide variety of compounds that can be syntrophically metabolized. The latter includes saturated fatty acids, unsaturated fatty acids, alcohols, and hydrocarbons. Besides residing in freshwater and marine anoxic sediments and soils, microbes capable of syntrophic metabolism also have been observed in more extreme habitats, including acidic soils, alkaline soils, thermal springs, and permanently cold soils, demonstrating that syntrophy is a widely distributed metabolic process in nature. Recent ecological and physiological studies show that syntrophy plays a far larger role in carbon cycling than was previously thought. The availability of the first complete genome sequences for four model microorganisms capable of syntrophic metabolism provides the genetic framework to begin dissecting the biochemistry of the marginal energy economies and interspecies interactions that are characteristic of the syntrophic lifestyle.


Assuntos
Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/genética , Deltaproteobacteria/metabolismo , Ácidos Graxos/metabolismo , Genômica , Bactérias Gram-Positivas/metabolismo , Filogenia , Propionatos/metabolismo
11.
Proc Natl Acad Sci U S A ; 104(18): 7600-5, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17442750

RESUMO

Biochemically, the syntrophic bacteria constitute the missing link in our understanding of anaerobic flow of carbon in the biosphere. The completed genome sequence of Syntrophus aciditrophicus SB, a model fatty acid- and aromatic acid-degrading syntrophic bacterium, provides a glimpse of the composition and architecture of the electron transfer and energy-transducing systems needed to exist on marginal energy economies of a syntrophic lifestyle. The genome contains 3,179,300 base pairs and 3,169 genes where 1,618 genes were assigned putative functions. Metabolic reconstruction of the gene inventory revealed that most biosynthetic pathways of a typical Gram-negative microbe were present. A distinctive feature of syntrophic metabolism is the need for reverse electron transport; the presence of a unique Rnf-type ion-translocating electron transfer complex, menaquinone, and membrane-bound Fe-S proteins with associated heterodisulfide reductase domains suggests mechanisms to accomplish this task. Previously undescribed approaches to degrade fatty and aromatic acids, including multiple AMP-forming CoA ligases and acyl-CoA synthetases seem to be present as ways to form and dissipate ion gradients by using a sodium-based energy strategy. Thus, S. aciditrophicus, although nutritionally self-sufficient, seems to be a syntrophic specialist with limited fermentative and respiratory metabolism. Genomic analysis confirms the S. aciditrophicus metabolic and regulatory commitment to a nonconventional mode of life compared with our prevailing understanding of microbiology.


Assuntos
Deltaproteobacteria/citologia , Deltaproteobacteria/genética , Genoma Bacteriano/genética , Termodinâmica , Trifosfato de Adenosina/biossíntese , Deltaproteobacteria/metabolismo , Elétrons , Viabilidade Microbiana , Dados de Sequência Molecular , Família Multigênica , Fosforilação , Transdução de Sinais , Especificidade por Substrato
12.
J Proteome Res ; 6(2): 759-71, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17269732

RESUMO

Methanosarcina acetivorans strain C2A is an acetate- and methanol-utilizing methane-producing organism for which the genome, the largest yet sequenced among the Archaea, reveals extensive physiological diversity. LC linear ion trap-FTICR mass spectrometry was employed to analyze acetate- vs methanol-grown cells metabolically labeled with 14N vs 15N, respectively, to obtain quantitative protein abundance ratios. DNA microarray analyses of acetate- vs methanol-grown cells was also performed to determine gene expression ratios. The combined approaches were highly complementary, extending the physiological understanding of growth and methanogenesis. Of the 1081 proteins detected, 255 were > or =3-fold differentially abundant. DNA microarray analysis revealed 410 genes that were > or =2.5-fold differentially expressed of 1972 genes with detected expression. The ratios of differentially abundant proteins were in good agreement with expression ratios of the encoding genes. Taken together, the results suggest several novel roles for electron transport components specific to acetate-grown cells, including two flavodoxins each specific for growth on acetate or methanol. Protein abundance ratios indicated that duplicate CO dehydrogenase/acetyl-CoA complexes function in the conversion of acetate to methane. Surprisingly, the protein abundance and gene expression ratios indicated a general stress response in acetate- vs methanol-grown cells that included enzymes specific for polyphosphate accumulation and oxidative stress. The microarray analysis identified transcripts of several genes encoding regulatory proteins with identity to the PhoU, MarR, GlnK, and TetR families commonly found in the Bacteria domain. An analysis of neighboring genes suggested roles in controlling phosphate metabolism (PhoU), ammonia assimilation (GlnK), and molybdopterin cofactor biosynthesis (TetR). Finally, the proteomic and microarray results suggested roles for two-component regulatory systems specific for each growth substrate.


Assuntos
Methanosarcina/crescimento & desenvolvimento , Acetatos/metabolismo , Meios de Cultura , DNA Arqueal/genética , Eletroforese em Gel de Poliacrilamida , Metanol/metabolismo , Methanosarcina/genética , Methanosarcina/metabolismo , Análise em Microsséries , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase/métodos , Proteômica , RNA Arqueal/genética , RNA Arqueal/isolamento & purificação
13.
J Bacteriol ; 187(17): 6046-57, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16109946

RESUMO

The heat shock response of the hyperthermophilic archaeon Archaeoglobus fulgidus strain VC-16 was studied using whole-genome microarrays. On the basis of the resulting expression profiles, approximately 350 of the 2,410 open reading frames (ORFs) (ca. 14%) exhibited increased or decreased transcript abundance. These span a range of cell functions, including energy production, amino acid metabolism, and signal transduction, where the majority are uncharacterized. One ORF called AF1298 was identified that contains a putative helix-turn-helix DNA binding motif. The gene product, HSR1, was expressed and purified from Escherichia coli and was used to characterize specific DNA recognition regions upstream of two A. fulgidus genes, AF1298 and AF1971. The results indicate that AF1298 is autoregulated and is part of an operon with two downstream genes that encode a small heat shock protein, Hsp20, and cdc48, an AAA+ ATPase. The DNase I footprints using HSR1 suggest the presence of a cis-binding motif upstream of AF1298 consisting of CTAAC-N5-GTTAG. Since AF1298 is negatively regulated in response to heat shock and encodes a protein only distantly related to the N-terminal DNA binding domain of Phr of Pyrococcus furiosus, these results suggest that HSR1 and Phr may belong to an evolutionarily diverse protein family involved in heat shock regulation in hyperthermophilic and mesophilic Archaea organisms.


Assuntos
Proteínas Arqueais/genética , Archaeoglobales/genética , Proteínas de Choque Térmico/genética , Sequência de Aminoácidos , Sequência Conservada , Regulação da Expressão Gênica em Archaea , Cinética , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Fases de Leitura Aberta , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
14.
Bioinformatics ; 21(7): 922-31, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15509602

RESUMO

MOTIVATION: Gene expression arrays enable measurements of transcription values for a large number or all genes in the genome. In order to better interpret these results and to use them to reconstruct transcription networks, information on location of binding sites for regulatory proteins in the entire genome is needed. In particular, this represents an open problem in Escherichia coli. RESULTS: We describe the first implementation of dictionary-style models to the study of transcription factors binding sites in an entire genome. Vocabulon's unique feature is that it can both reconstruct binding sites characterized by unknown motifs and impute locations of known binding sites in long sequences by simultaneous search. On one hand, the dictionary model specifies a probability for the entire sequence taking simultaneously into account all the possible binding sites. This greatly reduces the number of false positives. On the other hand, the possibility of refining motif description, as an increasing number of binding sites are identified, augments the sensitivity of the method. We illustrate these properties with examples in E.coli. The results of gene expression arrays are used both to guide the search and corroborate it.


Assuntos
Algoritmos , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Sítios de Ligação , Modelos Químicos , Modelos Genéticos , Modelos Estatísticos , Ligação Proteica , Software , Fatores de Transcrição/genética
15.
Conf Proc IEEE Eng Med Biol Soc ; 2004: 2933-6, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-17270892

RESUMO

A semiblind deconvolution method of analysis for gene expression data was proposed recently in a series of articles appeared in PNAS. We illustrate here how similar goals can be achieved in a Bayesian framework and how necessary information on the presence of binding sites can be obtained with Vocabulon, an algorithm based on a stochastic dictionary model.

16.
OMICS ; 7(3): 227-34, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14583113

RESUMO

DNA microarray data are affected by variations from a number of sources. Before these data can be used to infer biological information, the extent of these variations must be assessed. Here we describe an open source software package, lcDNA, that provides tools for filtering, normalizing, and assessing the statistical significance of cDNA microarray data. The program employs a hierarchical Bayesian model and Markov Chain Monte Carlo simulation to estimate gene-specific confidence intervals for each gene in a cDNA microarray data set. This program is designed to perform these primary analytical operations on data from two-channel spotted, or in situ synthesized, DNA microarrays.


Assuntos
Intervalos de Confiança , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Software , Teorema de Bayes , Calibragem , Interpretação Estatística de Dados , Perfilação da Expressão Gênica/métodos , Cadeias de Markov , Controle de Qualidade , Projetos de Pesquisa
17.
Nucleic Acids Res ; 30(13): 2886-93, 2002 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12087173

RESUMO

The prediction of operons, the smallest unit of transcription in prokaryotes, is the first step towards reconstruction of a regulatory network at the whole genome level. Sequence information, in particular the distance between open reading frames, has been used to predict if adjacent Escherichia coli genes are in an operon. While appreciably successful, these predictions need to be validated and refined experimentally. As a growing number of gene expression array experiments on E.coli became available, we investigated to what extent they could be used to improve and validate these predictions. To this end, we examined a large collection of published microarry data. The correlation between expression ratios of adjacent genes was used in a Bayesian classification scheme to predict whether the genes are in an operon or not. We found that for the genes whose expression levels change significantly across the experiments in the data set, the currently available gene expression data allowed a significant refinement of the sequenced-based predictions. We report these co-expression correlations in an E.coli genomic map. For a significant portion of gene pairs, however, the set of array experiments considered did not contain sufficient information to determine whether they are in the same transcriptional unit. This is not due to unreliability of the array data per se, but to the design of the experiments analyzed. In general, experiments that perturb a large number of genes offer more information for operon prediction than confined perturbations. These results provide a rationale for conducting expression studies comparing conditions that cause global changes in gene expression.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Óperon/genética , Mapeamento Cromossômico , Ordem dos Genes , Genes Bacterianos/genética , Modelos Genéticos
18.
J Biol Chem ; 277(15): 13175-83, 2002 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-11815613

RESUMO

This study characterized the transcript profile of Escherichia coli in acetate cultures using DNA microarray on glass slides. Glucose-grown cultures were used as a reference. At the 95% confidence level, 354 genes were up-regulated in acetate, while 370 genes were down-regulated compared with the glucose-grown culture. Generally, more metabolic genes were up-regulated in acetate than other gene groups, while genes involved in cell replication, transcription, and translation machinery tended to be down-regulated. It appears that E. coli commits more resources to metabolism at the expense of growth when cultured in the poor carbon source. The expression profile confirms many known features in acetate metabolism such as the induction of the glyoxylate pathway, tricarboxylic acid cycle, and gluconeogenic genes. It also provided many previously unknown features, including induction of malic enzymes, ppsA, and the glycolate pathway and repression of glycolytic and glucose phosphotransferase genes in acetate. The carbon flux delivered from the malic enzymes and PpsA in acetate was further confirmed by deletion mutations. In general, the gene expression profiles qualitatively agree with the metabolic flux changes and may serve as a predictor for gene function and metabolic flux distribution.


Assuntos
Acetatos/metabolismo , Escherichia coli/genética , Perfilação da Expressão Gênica , Genes Bacterianos , Sequência de Bases , Carbono/metabolismo , Primers do DNA , DNA Complementar , Metabolismo Energético , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...