Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol Rep ; 16(1): e13219, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070178

RESUMO

Wolbachia is a ubiquitous endosymbiotic bacterium that manipulates insect reproduction. A notable feature of Wolbachia is male killing (MK), whereby sons of infected females are killed during development; however, the evolutionary processes by which Wolbachia acquired the MK ability remain unclear. The tea tortrix moth Homona magnanima (Tortricidae) harbours three non-MK Wolbachia strains (wHm-a, wHm-b and wHm-c) and an MK strain wHm-t. Although wHm-t and wHm-c are closely related, only wHm-t has an MK-associated prophage region. To understand the evolutionary processes underlying the emergence of MK wHm-t, we examined Wolbachia infections and phenotypes in 62 tortricid species collected from 39 localities across Japan, Taiwan, Vietnam and Indonesia. PCR assays detected wHm-c relatives in 51 species and triple infection of wHm-a, wHm-b and wHm-c in 31 species. Apart from Taiwanese H. magnanima, no species exhibited the MK phenotype and were positive for the wHm-t-specific prophage. While wHm-t infection was dominant in Taiwanese H. magnanima, wHm-a, wHm-b and wHm-c were dominant in Japanese H. magnanima populations. These results suggest that wHm-a, wHm-b and wHm-c strains descended from a common ancestor with repeated infection loss and that wHm-t evolved from the wHm-c acquiring MK ability in allopatric populations of H. magnanima.


Assuntos
Mariposas , Wolbachia , Animais , Feminino , Masculino , Mariposas/genética , Mariposas/microbiologia , Wolbachia/genética , Reprodução , Fenótipo , Bactérias , Simbiose
2.
J Biomol Struct Dyn ; : 1-11, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968993

RESUMO

In recent years, there has been a growing focus on the development of novel antibacterial compounds for clinical applications, such as antimicrobial peptide (AMP). Among the developed AMP, wuchuanin-A1, a coil-shaped bioactive peptide derived from Odorrana wuchuanensis frog skin, has been reported to exhibit antibacterial, antifungal, and antioxidant activity, but there are limited studies on its potential as an antibacterial agent. Therefore, this study aims to molecularly modify the sequence of wuchuanin-A1 to enhance its antibacterial properties. The interaction of both the native and analog peptide with bacterial inner membranes was initially assessed using computational methods. Specific amino acid substitutions were then used to enhance the modified peptide's antibacterial efficacy, followed by several preliminary tests to evaluate its activity. This study bridges the gap in exploring the potential of wuchuanin-A1 for antibacterial purposes, providing insights into the design of effective antimicrobial agents.Communicated by Ramaswamy H. Sarma.

3.
Mol Biol Rep ; 48(2): 1697-1706, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33528727

RESUMO

Plant sucrose-phosphate synthase (SPS) contains a glycosyltransferase domain, which specifically catalyzes reactions with the nucleotide sugar uridine diphosphate glucose (UDP-G) as a donor substrate. Unlike plant SPS, bacterial SPS is predicted to bind other nucleotide sugars, such as adenosine diphosphate glucose (ADP-G). This study aimed to identify the UDP-G binding site of sugarcane (Saccharum officinarum) SPS (SoSPS1) and to improve its affinity for ADP-G by site-directed mutagenesis. To achieve targeted mutagenesis, amino acid distribution and comparative modeling studies were performed, followed by site-directed mutagenesis of SoSPS1 in the putative UDP-G binding motif. The N-terminal deletion of SoSPS1 (∆N-SoSPS1) was used for enzymatic analysis. The results showed that mutations in the R-X4-K, E-X7-E, and H-X5-V motifs significantly affect UDP-G and ADP-G binding. Mutations at R496 and K501 severely attenuate the affinity for UDP-G. Additionally, alanine substitutions at E591 and V570 decreased the UDP-G affinity but remarkably increased its ADP-G affinity. The R-X4-K motif plays a crucial role in the UDP-G binding site and catalytic activity of plant SPS; thus, its alteration to other amino acids was not viable. The E-X7-E and H-X5-V motifs may bind to the nucleotide glucose substrate, indicating that these motifs are involved in substrate specificity. These results agree with substrate docking simulations at the mutated residue positions, supporting the experimental results. These results demonstrate that mutation of E591 and V570 severely attenuated the UDP-G affinity, while retaining its activity against ADP-G, offering strategic insights into increasing sucrose synthesis and plant growth.


Assuntos
Adenosina Difosfato Glucose/química , Glucosiltransferases/química , Saccharum/enzimologia , Saccharum/genética , Uridina Difosfato Glucose/química , Adenosina Difosfato Glucose/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Escherichia coli/metabolismo , Expressão Gênica , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Cinética , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Mutação , N-Glicosil Hidrolases/metabolismo , Proteínas Recombinantes , Saccharum/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Uridina Difosfato Glucose/metabolismo
4.
Biochemistry ; 47(31): 8040-7, 2008 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18616283

RESUMO

Ribonuclease HI from the psychrotrophic bacterium Shewanella oneidensis MR-1 (So-RNase HI) is much less stable than Escherichia coli RNase HI (Ec-RNase HI) by 22.4 degrees C in T m and 12.5 kJ mol (-1) in Delta G(H 2O), despite their high degrees of structural and functional similarity. To examine whether the stability of So-RNase HI increases to a level similar to that of Ec-RNase HI via introduction of several mutations, the mutations that stabilize So-RNase HI were identified by the suppressor mutation method and combined. So-RNase HI and its variant with a C-terminal four-residue truncation (154-RNase HI) complemented the RNase H-dependent temperature-sensitive (ts) growth phenotype of E. coli strain MIC3001, while 153-RNase HI with a five-residue truncation could not. Analyses of the activity and stability of these truncated proteins suggest that 153-RNase HI is nonfunctional in vivo because of a great decrease in stability. Random mutagenesis of 153-RNase HI using error-prone PCR, followed by screening for the revertants, allowed us to identify six single suppressor mutations that make 153-RNase HI functional in vivo. Four of them markedly increased the stability of the wild-type protein by 3.6-6.7 degrees C in T m and 1.7-5.2 kJ mol (-1) in Delta G(H 2O). The effects of these mutations were nearly additive, and combination of these mutations increased protein stability by 18.7 degrees C in T m and 12.2 kJ mol (-1) in Delta G(H 2O). These results suggest that several residues are not optimal for the stability of So-RNase HI, and their replacement with other residues strikingly increases it to a level similar to that of the mesophilic counterpart.


Assuntos
Proteínas de Bactérias/genética , Mutação , Ribonuclease H/genética , Supressão Genética/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dicroísmo Circular , Estabilidade Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Teste de Complementação Genética , Mutagênese Sítio-Dirigida , Desnaturação Proteica/efeitos dos fármacos , Ribonuclease H/química , Ribonuclease H/metabolismo , Shewanella/enzimologia , Shewanella/genética , Temperatura , Ureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...