Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 152(6): 061102, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32061224

RESUMO

The adsorption of metal atoms on nanostructures, such as graphene and nanotubes, plays an important role in catalysis, electronic doping, and tuning material properties. Quantum chemical calculations permit the investigation of this process to discover desirable interactions and obtain mechanistic insights into adsorbate behavior, of which the binding strength is a central quantity. Binding strengths, however, vary widely in the literature, even when using almost identical computational methods. To address this issue, we investigate the adsorption of a variety of metals onto graphene, carbon nanotubes, and boron nitride nanotubes. As is well-known, calculations on periodic structures require a sufficiently large system size to remove interactions between periodic images. Our results indicate that there are both direct and indirect mechanisms for this interaction, where the latter can require even larger system sizes than typically employed. The magnitude and distance of the effect depends on the electronic state of the substrate and the open- or closed-shell nature of the adsorbate. For instance, insulating substrates (e.g., boron nitride nanotubes) show essentially no dependence on system size, whereas metallic or semi-metallic systems can have a substantial effect due to the delocalized nature of the electronic states interacting with the adsorbate. We derive a scaling relation for the length dependence with a representative tight-binding model. These results demonstrate how to extrapolate the binding energies to the isolated-impurity limit.

2.
Phys Rev B ; 102(1)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33385104

RESUMO

Motivated by recent observations of unconventional out-of-plane dampinglike torque in WTe2/Permalloy bilayer systems, we calculate the spin-orbit torque generated in two-dimensional transition metal dichalcogenide (TMD)/ferromagnet heterostructures using first-principles methods and linear response theory. Our numerical calculation of spin-orbit torques in WTe2/Co and MoTe2/Co heterostructures shows both conventional and novel dampinglike torkances (torque per electric field) with comparable magnitude, around one hundred ℏ/2e (Ω · cm)-1, for an electric-field applied perpendicular to the mirror plane of the TMD layer. To gain further insight into the source of dampinglike torque, we compute the spin current flux between the TMD and Co layers and find good agreement between the two quantities. This indicates that the conventional picture of dampinglike spin-orbit torque, whereby the torque results from the spin Hall effect plus spin transfer torque, largely applies to TMD/Co bilayer systems.

3.
Sci Adv ; 5(7): eaaw5478, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31309155

RESUMO

Biological ion channels balance electrostatic and dehydration effects to yield large ion selectivity alongside high transport rates. These macromolecular systems are often interrogated through point mutations of their pore domain, limiting the scope of mechanistic studies. In contrast, we demonstrate that graphene crown ether pores afford a simple platform to directly investigate optimal ion transport conditions, i.e., maximum current densities and selectivity. Crown ethers are known for selective ion adsorption. When embedded in graphene, however, transport rates lie below the drift-diffusion limit. We show that small pore strains (1%) give rise to a colossal (100%) change in conductance. This process is electromechanically tunable, with optimal transport in a primarily diffusive regime, tending toward barrierless transport, as opposed to a knock-on mechanism. These observations suggest a novel setup for nanofluidic devices while giving insight into the physical foundation of evolutionarily optimized ion transport in biological pores.

4.
J Phys Chem C Nanomater Interfaces ; 122(27): 15226-15240, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33868542

RESUMO

The interaction of boron nitride nanotubes (BNNTs) with Al has been investigated by means of quantum chemical calculations. Two model structures were used: a BNNT adsorbing a four atom Al4 cluster, and a BNNT adsorbed on Al surfaces of different crystallographic orientations. The BNNTs were modeled as: (i) pristine, and (ii) having a boron (B-) or a nitrogen (N-) vacancy defect. The results indicated that the trends in binding energy for Al4 clusters were, similar to those of the adsorption on Al surfaces, while the Al surface orientation has a limited effect. In all cases, the calculations reveal that Al binding to a BNNT was strongly enhanced at a defect site on the BNNT surface. This higher binding was accompanied by a significant distortion of the Al cluster or the Al lattice near the respective vacancy. In case of a B-vacancy, insertion of an Al atom into the defect of the BNNT lattice, was observed. The calculations suggest that in the Al/BNNT metal matrix composites, a defect-free BNNT experiences a weak binding interaction with the Al matrix and tthe commonly observed formation of AlN and AlB2 was due to N- or B-vacancy defects within the BNNTs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...