Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 12(39): 20158-20164, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32776025

RESUMO

3D printing research targets the creation of nanostructures beyond the limits of traditional micromachining. A proper characterisation of their functionalities is necessary to facilitate future implementation into applications. We fabricate, in an open atmosphere, high-aspect-ratio gold nanowalls by electrohydrodynamic rapid nanodripping, and comprehensively analyse their electronic performance by four-point probe measurements. We reveal the large-grained nanowall morphology by transmission electron microscopy and explain the measured low resistivities approaching those of bulk gold. This work is a significant advancement in contactless bottom-up 3D nanofabrication and characterisation and could also serve as a platform for fundamental studies of additively manufactured high-aspect-ratio out-of-plane metallic nanostructures.

2.
Adv Funct Mater ; 30(28): 1910491, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32684902

RESUMO

Many emerging applications in microscale engineering rely on the fabrication of 3D architectures in inorganic materials. Small-scale additive manufacturing (AM) aspires to provide flexible and facile access to these geometries. Yet, the synthesis of device-grade inorganic materials is still a key challenge toward the implementation of AM in microfabrication. Here, a comprehensive overview of the microstructural and mechanical properties of metals fabricated by most state-of-the-art AM methods that offer a spatial resolution ≤10 µm is presented. Standardized sets of samples are studied by cross-sectional electron microscopy, nanoindentation, and microcompression. It is shown that current microscale AM techniques synthesize metals with a wide range of microstructures and elastic and plastic properties, including materials of dense and crystalline microstructure with excellent mechanical properties that compare well to those of thin-film nanocrystalline materials. The large variation in materials' performance can be related to the individual microstructure, which in turn is coupled to the various physico-chemical principles exploited by the different printing methods. The study provides practical guidelines for users of small-scale additive methods and establishes a baseline for the future optimization of the properties of printed metallic objects-a significant step toward the potential establishment of AM techniques in microfabrication.

3.
ACS Nano ; 13(8): 9048-9056, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31294956

RESUMO

Energy transfer allows energy to be moved from one quantum emitter to another. If this process follows the Förster mechanism, efficient transfer requires the emitters to be extremely close (<10 nm). To increase the transfer range, nanophotonic structures have been explored for photon- or plasmon-mediated energy transfer. Here, we fabricate high-quality silver plasmonic resonators to examine long-distance plasmon-mediated energy transfer. Specifically, we design elliptical resonators that allow energy transfer between the foci, which are separated by up to 10 µm. The geometry of the ellipse guarantees that all plasmons emitted from one focus are collected and channeled through different paths to the other focus. Thus, energy can be transferred even if a micrometer-sized defect obstructs the direct path between the focal points. We characterize the spectral and spatial profiles of the resonator modes and show that these can be used to transfer energy between green- and red-emitting colloidal quantum dots printed with subwavelength accuracy using electrohydrodynamic nanodripping. Rate-equation modeling of the time-resolved fluorescence from the quantum dots further confirms the long-distance energy transfer.

4.
Nat Commun ; 10(1): 1853, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015443

RESUMO

An extensive range of metals can be dissolved and re-deposited in liquid solvents using electrochemistry. We harness this concept for additive manufacturing, demonstrating the focused electrohydrodynamic ejection of metal ions dissolved from sacrificial anodes and their subsequent reduction to elemental metals on the substrate. This technique, termed electrohydrodynamic redox printing (EHD-RP), enables the direct, ink-free fabrication of polycrystalline multi-metal 3D structures without the need for post-print processing. On-the-fly switching and mixing of two metals printed from a single multichannel nozzle facilitates a chemical feature size of <400 nm with a spatial resolution of 250 nm at printing speeds of up to 10 voxels per second. As shown, the additive control of the chemical architecture of materials provided by EHD-RP unlocks the synthesis of 3D bi-metal structures with programmed local properties and opens new avenues for the direct fabrication of chemically architected materials and devices.

5.
Nat Commun ; 10(1): 1880, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015474

RESUMO

Organic compounds present a powerful platform for nanotechnological applications. In particular, molecules suitable for optical functionalities such as single photon generation and energy transfer have great promise for complex nanophotonic circuitry due to their large variety of spectral properties, efficient absorption and emission, and ease of synthesis. Optimal integration, however, calls for control over position and orientation of individual molecules. While various methods have been explored for reaching this regime in the past, none satisfies requirements necessary for practical applications. Here, we present direct non-contact electrohydrodynamic nanoprinting of a countable number of photostable and oriented molecules in a nanocrystal host with subwavelength positioning accuracy. We demonstrate the power of our approach by writing arbitrary patterns and controlled coupling of single molecules to the near field of optical nanostructures. Placement precision, high yield and fabrication facility of our method open many doors for the realization of novel nanophotonic devices.

6.
Phys Rev Lett ; 121(11): 113601, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30265099

RESUMO

Fifty years ago, Drexhage et al. showed how photon emission from an electric dipole can be modified by a nearby mirror. Here, we study the two-dimensional analog for surface plasmon polaritons (SPPs). We print Eu^{3+}-doped nanoparticles, which act as both electric- and magnetic-dipole sources of SPPs, near plasmonic reflectors on flat Ag films. We measure modified SPP radiation patterns and emission rates as a function of reflector distance and source symmetry. The results, which agree with an analytical self-interference model, provide simple strategies to control SPP radiation in plasmonic devices.

7.
Sci Adv ; 3(9): e1700688, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28948219

RESUMO

Colloidal quantum dots are robust, efficient, and tunable emitters now used in lighting, displays, and lasers. Consequently, when the spaser-a laser-like source of high-intensity, narrow-band surface plasmons-was first proposed, quantum dots were specified as the ideal plasmonic gain medium for overcoming the significant intrinsic losses of plasmons. Many subsequent spasers, however, have required a single material to simultaneously provide gain and define the plasmonic cavity, a design unable to accommodate quantum dots and other colloidal nanomaterials. In addition, these and other designs have been ill suited for integration with other elements in a larger plasmonic circuit, limiting their use. We develop a more open architecture that decouples the gain medium from the cavity, leading to a versatile class of quantum dot-based spasers that allow controlled generation, extraction, and manipulation of plasmons. We first create aberration-corrected plasmonic cavities with high quality factors at desired locations on an ultrasmooth silver substrate. We then incorporate quantum dots into these cavities via electrohydrodynamic printing or drop-casting. Photoexcitation under ambient conditions generates monochromatic plasmons (0.65-nm linewidth at 630 nm, Q ~ 1000) above threshold. This signal is extracted, directed through an integrated amplifier, and focused at a nearby nanoscale tip, generating intense electromagnetic fields. More generally, our device platform can be straightforwardly deployed at different wavelengths, size scales, and geometries on large-area plasmonic chips for fundamental studies and applications.

8.
Nanoscale ; 7(21): 9510-9, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25947628

RESUMO

Gold nanoparticles with unique electronic, optical and catalytic properties can be efficiently synthesized in colloidal suspensions and are of broad scientific and technical interest and utility. However, their orderly integration on functional surfaces and devices remains a challenge. Here we show that single gold nanoparticles can be directly grown in individually printed, stabilized metal-salt ink attoliter droplets, using a nanoscale electrohydrodynamic printing method with a stable high-frequency dripping mode. This enables controllable sessile droplet nanoreactor formation and sustenance on non-wetting substrates, despite simultaneous rapid evaporation. The single gold nanoparticles can be formed inside such reactors in situ or by subsequent thermal annealing and plasma ashing. With this non-contact technique, single particles with diameters tunable in the range of 5-35 nm and with narrow size distribution, high yield and alignment accuracy are generated on demand and patterned into arbitrary arrays. The nanoparticles feature good catalytic activity as shown by the exemplary growth of silicon nanowires from the nanoparticles and the etching of nanoholes by the printed nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...